218 research outputs found
On the existence of supersolid helium-4 monolayer films
Extensive Monte Carlo simulations of helium-4 monolayer films adsorbed on
weak substrates have been carried out, aimed at ascertaining the possible
occurrence of a quasi-two-dimensional supersolid phase. Only crystalline films
not registered with underlying substrates are considered. Numerical results
yield strong evidence that helium-4 will not form a supersolid film on {any}
substrate strong enough to stabilize a crystalline layer. On weaker substrates,
continuous growth of a liquid film takes place
Vacancy supersolid of hard-core bosons on the square lattice
The ground state of hard-core bosons on the square lattice with nearest and
next-nearest neighbor repulsion is studied by Quantum Monte Carlo simulations.
A supersolid phase with vacancy condensation and 'star' diagonal ordering is
found for filling less than a quarter. At fillings above one quarter, a
supersolid phase exists between the star and the stripe crystal at
half-filling. No supersolid phase occurs above quarter-filling, if the ground
state at half-filling is either a checkerboard crystal or a superfluid. No
commensurate supersolid phase is observed.Comment: Replaced with published versio
Phase diagram of soft-core bosons in two dimensions
The low temperature phase diagram of Bose soft disks in two dimensions is
studied by numerical simulations. It is shown that a supersolid cluster phase
exists, within a range of the model parameters, analogous to that recently
observed for a system of aligned dipoles interacting via a softened potential
at short distance. These findings indicate that a long-range tail of the
interaction is unneeded to obtain such a phase, and that the soft-core
repulsive interaction is the minimal model for supersolidity
Adsorption of para-Hydrogen on Krypton pre-plated graphite
Adsorption of para-Hydrogen on the surface of graphite pre-plated with a
single layer of atomic krypton is studied thoretically by means of Path
Integral Ground State Monte Carlo simulations. We compute energetics and
density profiles of para-hydrogen, and determine the structure of the adsorbed
film for various coverages. Results show that there are two thermodynamically
stable monolayer phases of para-hydrogen, both solid. One is commensurate with
the krypton layer, the other is incommensurate. No evidence is seen of a
thermodynamically stable liquid phase, at zero temperature. These results are
qualitatively similar to what is seen for for para-hydrogen on bare graphite.
Quantum exchanges of hydrogen molecules are suppressed in this system.Comment: 12 pages, 6 figures, to appear in the proceedings of "Advances in
Computational Many-Body Physics", Banff, Alberta (Canada), January 13-16 200
Absence of Superfluidity in 2D Dipolar Bose Striped Crystals
We present results of computer simulations at low temperature of a
two-dimensional system of dipolar bosons, with dipole moments aligned at an
arbitrary angle with respect to the direction perpendicular to the plane. The
phase diagram includes a homogeneous superfluid phase, as well as triangular
and striped crystalline phases, as the particle density and the tilt angle are
varied. In the striped solid, no phase coherence among stripes and consequently
no ``supersolid" phase is found, in disagreement with recent theoretical
predictions.Comment: Accepted for publication as a Rapid Communication in the Journal of
Low Temperature Physic
Thin helium film on a glass substrate
We investigate by Monte Carlo simulations the structure, energetics and
superfluid properties of thin helium-four films (up to four layers) on a glass
substrate, at low temperature. The first adsorbed layer is found to be solid
and "inert", i.e., atoms are localized and do not participate to quantum
exchanges. Additional layers are liquid, with no clear layer separation above
the second one. It is found that a single helium-three impurity resides on the
outmost layer, not significantly further away from the substrate than
helium-four atoms on the same layer.Comment: Six figures, submitted for publication to the Journal of Low
Temperature Physic
Worm Algorithm for Continuous-space Path Integral Monte Carlo Simulations
We present a new approach to path integral Monte Carlo (PIMC) simulations
based on the worm algorithm, originally developed for lattice models and
extended here to continuous-space many-body systems. The scheme allows for
efficient computation of thermodynamic properties, including winding numbers
and off-diagonal correlations, for systems of much greater size than that
accessible to conventional PIMC. As an illustrative application of the method,
we simulate the superfluid transition of Helium-four in two dimensions.Comment: Fig. 2 differs from that of published version (includes data for
larger system sizes
- …