94 research outputs found

    On the number of attractors in random Boolean networks

    Full text link
    The evaluation of the number of attractors in Kauffman networks by Samuelsson and Troein is generalized to critical networks with one input per node and to networks with two inputs per node and different probability distributions for update functions. A connection is made between the terms occurring in the calculation and between the more graphic concepts of frozen, nonfrozen and relevant nodes, and relevant components. Based on this understanding, a phenomenological argument is given that reproduces the dependence of the attractor numbers on system size.Comment: 6 page

    The properties of attractors of canalyzing random Boolean networks

    Full text link
    We study critical random Boolean networks with two inputs per node that contain only canalyzing functions. We present a phenomenological theory that explains how a frozen core of nodes that are frozen on all attractors arises. This theory leads to an intuitive understanding of the system's dynamics as it demonstrates the analogy between standard random Boolean networks and networks with canalyzing functions only. It reproduces correctly the scaling of the number of nonfrozen nodes with system size. We then investigate numerically attractor lengths and numbers, and explain the findings in terms of the properties of relevant components. In particular we show that canalyzing networks can contain very long attractors, albeit they occur less often than in standard networks.Comment: 9 pages, 8 figure

    Number and length of attractors in a critical Kauffman model with connectivity one

    Full text link
    The Kauffman model describes a system of randomly connected nodes with dynamics based on Boolean update functions. Though it is a simple model, it exhibits very complex behavior for "critical" parameter values at the boundary between a frozen and a disordered phase, and is therefore used for studies of real network problems. We prove here that the mean number and mean length of attractors in critical random Boolean networks with connectivity one both increase faster than any power law with network size. We derive these results by generating the networks through a growth process and by calculating lower bounds.Comment: 4 pages, no figure, no table; published in PR

    Perturbation propagation in random and evolved Boolean networks

    Full text link
    We investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and modifications of it. We show that even small Random Boolean Networks agree well with the predictions of the annealed approximation, but non-random networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.Comment: 10 pages, 8 figure

    The dynamics of critical Kauffman networks under asynchronous stochastic update

    Full text link
    We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.Comment: submitted to PR

    Critical Kauffman networks under deterministic asynchronous update

    Full text link
    We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods may become very long when delays are not integer multiples of the basic update step.Comment: 8 pages, 3 figures, submitted to a journa

    Vertex routing models

    Full text link
    A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a non-zero information centrality to be extensive/sub-extensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results on the information flow in social networks are discussed.Comment: 12 pages, 6 figure

    Mutual information in random Boolean models of regulatory networks

    Full text link
    The amount of mutual information contained in time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating show that as the number of network nodes N approaches infinity, the quantity N exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.Comment: 11 pages, 6 figures; Minor revisions for clarity and figure format, one reference adde

    Finite size corrections to random Boolean networks

    Full text link
    Since their introduction, Boolean networks have been traditionally studied in view of their rich dynamical behavior under different update protocols and for their qualitative analogy with cell regulatory networks. More recently, tools borrowed from statistical physics of disordered systems and from computer science have provided a more complete characterization of their equilibrium behavior. However, the largest part of the results have been obtained in the thermodynamic limit, which is often far from being reached when dealing with realistic instances of the problem. The numerical analysis presented here aims at comparing - for a specific family of models - the outcomes given by the heuristic belief propagation algorithm with those given by exhaustive enumeration. In the second part of the paper some analytical considerations on the validity of the annealed approximation are discussed.Comment: Minor correction

    Computational core and fixed-point organisation in Boolean networks

    Full text link
    In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows to prune simple logical cascades and under-determined variables, returning thereby the computational core of the network. Second we apply the cavity method to analyse number and organisation of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter one being characterised by the existence of an exponential number of macroscopically separated fixed-point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied to analysis and in silico experiments on the gene-regulatory networks of baker's yeast (saccaromices cerevisiae) and the segment-polarity genes of the fruit-fly drosophila melanogaster.Comment: 29 pages, 18 figures, version accepted for publication in JSTA
    • …
    corecore