85,733 research outputs found

    Accelerating Staggered Fermion Dynamics with the Rational Hybrid Monte Carlo (RHMC) Algorithm

    Full text link
    Improved staggered fermion formulations are a popular choice for lattice QCD calculations. Historically, the algorithm used for such calculations has been the inexact R algorithm, which has systematic errors that only vanish as the square of the integration step-size. We describe how the exact Rational Hybrid Monte Carlo (RHMC) algorithm may be used in this context, and show that for parameters corresponding to current state-of-the-art computations it leads to a factor of approximately seven decrease in cost as well as having no step-size errors.Comment: 4 pages, 2 figures, 1 tabl

    The Rational Hybrid Monte Carlo Algorithm

    Get PDF
    The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.Comment: 15 pages. Proceedings from Lattice 200

    Exact 2+1 flavour RHMC simulations

    Full text link
    We consider the Rational Hybrid Monte Carlo algorithm for performing exact 2+1 flavour fermion simulations. The specific cases of ASQTAD and domain wall fermions are considered. We find that in both cases the naive performance is similar to conventional hybrid algorithms.Comment: 3 pages, no figure
    • ‚Ķ
    corecore