24,019 research outputs found
The Reionization History and Early Metal Enrichment inferred from the Gamma-Ray Burst Rate
Based on the gamma-ray burst (GRB) event rate at redshifts of , which is assessed by the spectral peak energy-to-luminosity relation
recently found by Yonetoku et al., we observationally derive the star formation
rate (SFR) for Pop III stars in a high redshift universe. As a result, we find
that Pop III stars could form continuously at . Using the
derived Pop III SFR, we attempt to estimate the ultraviolet (UV) photon
emission rate at in which redshift range no observational
information has been hitherto obtained on ionizing radiation intensity. We find
that the UV emissivity at can make a noticeable contribution
to the early reionization. The maximal emissivity is higher than the level
required to keep ionizing the intergalactic matter at .
However, if the escape fraction of ionizing photons from Pop III objects is
smaller than 10%, then the IGM can be neutralized at some redshift, which may
lead to the double reionization. As for the enrichment, the ejection of all
metals synthesized in Pop III objects is marginally consistent with the IGM
metallicity, although the confinement of metals in Pop III objects can reduce
the enrichment significantly.Comment: 12 pages, 2 figures, ApJL accepte
Well-localized edge states in two-dimensional topological insulators: ultrathin Bi films
We theoretically study the generic behavior of the penetration depth of the
edge states in two-dimensional quantum spin Hall systems. We found that the
momentum-space width of the edge-state dispersion scales with the inverse of
the penetration depth. As an example of well-localized edge states, we take the
Bi(111) ultrathin film. Its edge states are found to extend almost over the
whole Brillouin zone. Correspondingly, the bismuth (111) 1-bilayer system is
proposed to have well-localized edge states in contrast to the HgTe quantum
well.Comment: 4 pages, 4 figure
Decoherence in Phase Space
Much of the discussion of decoherence has been in terms of a particle moving
in one dimension that is placed in an initial superposition state (a
Schr\"{o}dinger "cat" state) corresponding to two widely separated wave
packets. Decoherence refers to the destruction of the interference term in the
quantum probability function. Here, we stress that a quantitative measure of
decoherence depends not only on the specific system being studied but also on
whether one is considering coordinate, momentum or phase space. We show that
this is best illustrated by considering Wigner phase space where the measure is
again different. Analytic results for the time development of the Wigner
distribution function for a two-Gaussian Schrodinger "cat" state have been
obtained in the high-temperature limit (where decoherence can occur even for
negligible dissipation) which facilitates a simple demonstration of our
remarks.Comment: in press in Laser Phys.13(2003
Spin Hall effects in diffusive normal metals
We consider spin and charge flow in normal metals. We employ the Keldysh
formalism to find transport equations in the presence of spin-orbit
interaction, interaction with magnetic impurities, and non-magnetic impurity
scattering. Using the quasiclassical approximation, we derive diffusion
equations which include contributions from skew scattering, side-jump
scattering and the anomalous spin-orbit induced velocity. We compute the
magnitude of various spin Hall effects in experimental relevant geometries and
discuss when the different scattering mechanisms are important.Comment: 10 pages, 4 figure
Spatial separation of large dynamical blue shift and harmonic generation
We study the temporal and spatial dynamics of the large amplitude and
frequency modulation that can be induced in an intense, few cycle laser pulse
as it propagates through a rapidly ionizing gas. Our calculations include both
single atom and macroscopic interactions between the non-linear medium and the
laser field. We analyze the harmonic generation by such pulses and show that it
is spatially separated from the ionization dynamics which produce a large
dynamical blue shift of the laser pulse. This means that small changes in the
initial laser focusing conditions can lead to large differences in the laser
frequency modulation, even though the generated harmonic spectrum remains
essentially unchanged.Comment: 4 pages, 5 figures. Under revisio
Dense blocks of energetic ions driven by multi-petawatt lasers
Laser-driven ion accelerators have the advantages of compact size, high
density, and short bunch duration over conventional accelerators. Nevertheless,
it is still challenging to simultaneously enhance the yield and quality of
laser-driven ion beams for practical applications. Here we propose a scheme to
address this challenge via the use of emerging multi-petawatt lasers and a
density-modulated target. The density-modulated target permits its ions to be
uniformly accelerated as a dense block by laser radiation pressure. In
addition, the beam quality of the accelerated ions is remarkably improved by
embedding the target in a thick enough substrate, which suppresses hot electron
refluxing and thus alleviates plasma heating. Particle-in-cell simulations
demonstrate that almost all ions in a solid-density plasma of a few microns can
be uniformly accelerated to about 25% of the speed of light by a laser pulse at
an intensity around 1022 W/cm2. The resulting dense block of energetic ions may
drive fusion ignition and more generally create matter with unprecedented high
energy density.Comment: 18 pages, 4 figure
Spin Hall Effect of Excitons
Spin Hall effect for excitons in alkali halides and in Cu_2O is investigated
theoretically. In both systems, the spin Hall effect results from the Berry
curvature in k space, which becomes nonzero due to lifting of degeneracies of
the exciton states by exchange coupling. The trajectory of the excitons can be
directly seen as spatial dependence of the circularly polarized light emitted
from the excitons. It enables us to observe the spin Hall effect directly in
the real-space time.Comment: 5 pages, 2 figure
- …