7,603 research outputs found

    Flash of photons from the early stage of heavy-ion collisions

    Get PDF
    The dynamics of partonic cascades may be an important aspect for particle production in relativistic collisions of nuclei at CERN SPS and BNL RHIC energies. Within the Parton-Cascade Model, we estimate the production of single photons from such cascades due to scattering of quarks and gluons q g -> q gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter QED branching process plays the dominant role for photon production, similarly as the QCD branchings q -> q g and g -> g g play a crucial role for parton multiplication. We conclude therefore that photons accompanying the parton cascade evolution during the early stage of heavy-ion collisions shed light on the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure

    Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach

    Get PDF
    We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 - 3 depending on the hadron species.Comment: 10 pages, 4 eps figures include

    Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?

    Get PDF
    We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the earlier developed and recently refined parton-cascade/cluster-hadronization model and its Monte Carlo implementation. This space-time model involves the dynamical interplay of perturbative QCD parton production and evolution, with non-perturbative parton-cluster formation and hadron production through cluster decays. Using computer simulations, we are able to follow the entwined time-evolution of parton and hadron degrees of freedom in both position and momentum space, from the instant of nuclear overlap to the final yield of particles. We present and discuss results for the multiplicity distributions, which agree well with the measured data from the CERN SPS, including those for K mesons. The transverse momentum distributions of the produced hadrons are also found to be in good agreement with the preliminary data measured by the NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN SPS. The analysis of the time evolution of transverse energy deposited in the collision zone and the energy density suggests an existence of partonic matter for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure

    Move Forward and Tell: A Progressive Generator of Video Descriptions

    Full text link
    We present an efficient framework that can generate a coherent paragraph to describe a given video. Previous works on video captioning usually focus on video clips. They typically treat an entire video as a whole and generate the caption conditioned on a single embedding. On the contrary, we consider videos with rich temporal structures and aim to generate paragraph descriptions that can preserve the story flow while being coherent and concise. Towards this goal, we propose a new approach, which produces a descriptive paragraph by assembling temporally localized descriptions. Given a video, it selects a sequence of distinctive clips and generates sentences thereon in a coherent manner. Particularly, the selection of clips and the production of sentences are done jointly and progressively driven by a recurrent network -- what to describe next depends on what have been said before. Here, the recurrent network is learned via self-critical sequence training with both sentence-level and paragraph-level rewards. On the ActivityNet Captions dataset, our method demonstrated the capability of generating high-quality paragraph descriptions for videos. Compared to those by other methods, the descriptions produced by our method are often more relevant, more coherent, and more concise.Comment: Accepted by ECCV 201

    Isoscalar-isovector mass splittings in excited mesons

    Full text link
    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.Comment: 8 RevTeX pages, including 1 LaTeX figure. CMU-HEP93-23/DOE-ER-40682-4

    Semantically Guided Depth Upsampling

    Full text link
    We present a novel method for accurate and efficient up- sampling of sparse depth data, guided by high-resolution imagery. Our approach goes beyond the use of intensity cues only and additionally exploits object boundary cues through structured edge detection and semantic scene labeling for guidance. Both cues are combined within a geodesic distance measure that allows for boundary-preserving depth in- terpolation while utilizing local context. We model the observed scene structure by locally planar elements and formulate the upsampling task as a global energy minimization problem. Our method determines glob- ally consistent solutions and preserves fine details and sharp depth bound- aries. In our experiments on several public datasets at different levels of application, we demonstrate superior performance of our approach over the state-of-the-art, even for very sparse measurements.Comment: German Conference on Pattern Recognition 2016 (Oral

    Imprint of Gravitational Lensing by Population III Stars in Gamma Ray Burst Light Curves

    Get PDF
    We propose a novel method to extract the imprint of gravitational lensing by Pop III stars in the light curves of Gamma Ray Bursts (GRBs). Significant portions of GRBs can originate in hypernovae of Pop III stars and be gravitationally lensed by foreground Pop III stars or their remnants. If the lens mass is on the order of 102−103M⊙10^2-10^3M_\odot and the lens redshift is greater than 10, the time delay between two lensed images of a GRB is ≈1\approx 1s and the image separation is ≈10ÎŒ\approx 10 \muas. Although it is difficult to resolve the two lensed images spatially with current facilities, the light curves of two images are superimposed with a delay of ≈1\approx 1 s. GRB light curves usually exhibit noticeable variability, where each spike is less than 1s. If a GRB is lensed, all spikes are superimposed with the same time delay. Hence, if the autocorrelation of light curve with changing time interval is calculated, it should show the resonance at the time delay of lensed images. Applying this autocorrelation method to GRB light curves which are archived as the {\it BATSE} catalogue, we demonstrate that more than half light curves can show the recognizable resonance, if they are lensed. Furthermore, in 1821 GRBs we actually find one candidate of GRB lensed by a Pop III star, which may be located at redshift 20-200. The present method is quite straightforward and therefore provides an effective tool to search for Pop III stars at redshift greater than 10. Using this method, we may find more candidates of GRBs lensed by Pop III stars in the data by the {\it Swift} satellite.Comment: 13 pages, 13 figures, accepted for publication in Ap
    • 

    corecore