62 research outputs found

    Is Normalization Indispensable for Multi-domain Federated Learning?

    Full text link
    Federated learning (FL) enhances data privacy with collaborative in-situ training on decentralized clients. Nevertheless, FL encounters challenges due to non-independent and identically distributed (non-i.i.d) data, leading to potential performance degradation and hindered convergence. While prior studies predominantly addressed the issue of skewed label distribution, our research addresses a crucial yet frequently overlooked problem known as multi-domain FL. In this scenario, clients' data originate from diverse domains with distinct feature distributions, as opposed to label distributions. To address the multi-domain problem in FL, we propose a novel method called Federated learning Without normalizations (FedWon). FedWon draws inspiration from the observation that batch normalization (BN) faces challenges in effectively modeling the statistics of multiple domains, while alternative normalization techniques possess their own limitations. In order to address these issues, FedWon eliminates all normalizations in FL and reparameterizes convolution layers with scaled weight standardization. Through comprehensive experimentation on four datasets and four models, our results demonstrate that FedWon surpasses both FedAvg and the current state-of-the-art method (FedBN) across all experimental setups, achieving notable improvements of over 10% in certain domains. Furthermore, FedWon is versatile for both cross-silo and cross-device FL, exhibiting strong performance even with a batch size as small as 1, thereby catering to resource-constrained devices. Additionally, FedWon effectively tackles the challenge of skewed label distribution

    When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions

    Full text link
    The intersection of the Foundation Model (FM) and Federated Learning (FL) provides mutual benefits, presents a unique opportunity to unlock new possibilities in AI research, and address critical challenges in AI and real-world applications. FL expands the availability of data for FMs and enables computation sharing, distributing the training process and reducing the burden on FL participants. It promotes collaborative FM development, democratizing the process and fostering inclusivity and innovation. On the other hand, FM, with its enormous size, pre-trained knowledge, and exceptional performance, serves as a robust starting point for FL, facilitating faster convergence and better performance under non-iid data. Additionally, leveraging FM to generate synthetic data enriches data diversity, reduces overfitting, and preserves privacy. By examining the interplay between FL and FM, this paper aims to deepen the understanding of their synergistic relationship, highlighting the motivations, challenges, and future directions. Through an exploration of the challenges faced by FL and FM individually and their interconnections, we aim to inspire future research directions that can further enhance both fields, driving advancements and propelling the development of privacy-preserving and scalable AI systems

    MAS: Towards Resource-Efficient Federated Multiple-Task Learning

    Full text link
    Federated learning (FL) is an emerging distributed machine learning method that empowers in-situ model training on decentralized edge devices. However, multiple simultaneous FL tasks could overload resource-constrained devices. In this work, we propose the first FL system to effectively coordinate and train multiple simultaneous FL tasks. We first formalize the problem of training simultaneous FL tasks. Then, we present our new approach, MAS (Merge and Split), to optimize the performance of training multiple simultaneous FL tasks. MAS starts by merging FL tasks into an all-in-one FL task with a multi-task architecture. After training for a few rounds, MAS splits the all-in-one FL task into two or more FL tasks by using the affinities among tasks measured during the all-in-one training. It then continues training each split of FL tasks based on model parameters from the all-in-one training. Extensive experiments demonstrate that MAS outperforms other methods while reducing training time by 2x and reducing energy consumption by 40%. We hope this work will inspire the community to further study and optimize training simultaneous FL tasks.Comment: ICCV'23. arXiv admin note: substantial text overlap with arXiv:2207.0420

    Reducing Communication for Split Learning by Randomized Top-k Sparsification

    Full text link
    Split learning is a simple solution for Vertical Federated Learning (VFL), which has drawn substantial attention in both research and application due to its simplicity and efficiency. However, communication efficiency is still a crucial issue for split learning. In this paper, we investigate multiple communication reduction methods for split learning, including cut layer size reduction, top-k sparsification, quantization, and L1 regularization. Through analysis of the cut layer size reduction and top-k sparsification, we further propose randomized top-k sparsification, to make the model generalize and converge better. This is done by selecting top-k elements with a large probability while also having a small probability to select non-top-k elements. Empirical results show that compared with other communication-reduction methods, our proposed randomized top-k sparsification achieves a better model performance under the same compression level.Comment: Accepted by IJCAI 202
    • …
    corecore