153 research outputs found

    Non-perturbative Renormalization of Improved Staggered Bilinears

    Full text link
    We compute Z-factors for general staggered bilinears on fine (a \approx 0.09 fm) MILC ensembles using both asqtad and HYP-smeared valence actions, comparing the results to the predictions of one-loop perturbation theory. This is an extension of previous work on the coarse (a \approx 0.12 fm) MILC ensembles. It provides a laboratory for studying NPR methodology in the staggered context, and is an important stepping stone for fully non-perturbative matching factors in ongoing computations of B_K and other weak matrix elements. We also implement non-exceptional RI/SMOM renormalization conditions using the asqtad action and present first results.Comment: 7 pages, 4 figures. Contribution to the 30th International Symposium on Lattice Field Theory, June 24-29, 2012, Cairns, Australi

    Using Wilson flow to study the SU(3) deconfinement transition

    Get PDF
    We explore the use of Wilson flow to study the deconfinement transition in SU(3) gauge theory. We use the flowed Polyakov loop as a renormalized order parameter for the transition, and use it to renormalize the Polyakov loop. We also study the flow properties of the electric and magnetic gluon condensates, and demonstrate that the difference of the flowed operators shows rapid change across the transition point.Comment: 13 pages, 10 figures. Small changes in figures and discussion, results unchanged. Published versio

    A Journey South

    Get PDF

    A Simple Algebraic Grid Adaptation Scheme with Applications to Two- and Three-dimensional Flow Problems

    Get PDF
    An algebraic adaptive grid scheme based on the concept of arc equidistribution is presented. The scheme locally adjusts the grid density based on gradients of selected flow variables from either finite difference or finite volume calculations. A user-prescribed grid stretching can be specified such that control of the grid spacing can be maintained in areas of known flowfield behavior. For example, the grid can be clustered near a wall for boundary layer resolution and made coarse near the outer boundary of an external flow. A grid smoothing technique is incorporated into the adaptive grid routine, which is found to be more robust and efficient than the weight function filtering technique employed by other researchers. Since the present algebraic scheme requires no iteration or solution of differential equations, the computer time needed for grid adaptation is trivial, making the scheme useful for three-dimensional flow problems. Applications to two- and three-dimensional flow problems show that a considerable improvement in flowfield resolution can be achieved by using the proposed adaptive grid scheme. Although the scheme was developed with steady flow in mind, it is a good candidate for unsteady flow computations because of its efficiency

    The B(s)→D(s)lνB_{(s)} \to D_{(s)}l\nu Decay with Highly Improved Staggered Quarks and NRQCD

    Full text link
    We report on progress of a lattice QCD calculation of the B→DlνB\to Dl\nu and Bs→DslνB_s\to D_s l\nu semileptonic form factors. We use a relativistic staggered action (HISQ) for light and charm quarks, and an improved non-relativistic (NRQCD) action for bottom, on the second generation MILC ensembles.Comment: Presented at Lattice 2017, the 35th International Symposium on Lattice Field Theory at Granada, Spain (18-24 June 2017
    • …
    corecore