597 research outputs found
Nanodroplet Impact on Solid Platinum Surface: Spreading and Bouncing
Video of argon nanodroplet impacting onto wetting and non-wetting surface.
This video was submitted as part of the Gallery of Fluid Motion 2009 which is
showcase of fluid dynamics videos.Comment: 2 pages, 2 linked animations/video
Neutron and X-ray Scattering Studies of the Lightly-Doped Spin-Peierls System Cu(1-x)Cd(x)GeO3
Single crystals of the lightly-doped spin-Peierls system Cu(1-x)Cd(x)GeO3
have been studied using bulk susceptibility, x-ray diffraction, and inelastic
neutron scattering techniques. We investigate the triplet gap in the magnetic
excitation spectrum of this quasi-one dimensional quantum antiferromagnet, and
its relation to the spin-Peierls dimerisation order parameter. We employ two
different theoretical forms to model the inelastic neutron scattering cross
section and chi''(Q,omega), and show the sensitivity of the gap energy to the
choice of chi''(Q,omega). We find that a finite gap exists at the spin-Peierls
phase transition.Comment: 15 Pages, 7 Figures, Submitted to J. Phys. :Condensed Matte
On the soliton width in the incommensurate phase of spin-Peierls systems
We study using bosonization techniques the effects of frustration due to
competing interactions and of the interchain elastic couplings on the soliton
width and soliton structure in spin-Peierls systems. We compare the predictions
of this study with numerical results obtained by exact diagonalization of
finite chains. We conclude that frustration produces in general a reduction of
the soliton width while the interchain elastic coupling increases it. We
discuss these results in connection with recent measurements of the soliton
width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex
Influence of a magnetic field on the antiferromagnetic order in UPt_3
A neutron diffraction experiment was performed to investigate the effect of a
magnetic field on the antiferromagnetic order in the heavy fermion
superconductor UPt_3. Our results show that a field in the basal plane of up to
3.2 Tesla, higher than H_c2(0), has no effect: it can neither select a domain
nor rotate the moment. This has a direct impact on current theories for the
superconducting phase diagram based on a coupling to the magnetic order.Comment: 7 pages, RevTeX, 3 postscript figures, submitted to Phys. Rev.
Thermal Conductivity of superconducting (TMTSF)_2ClO_4: evidence for a nodeless gap
We report on the first measurements of thermal conductivity in the
superconducting state of (TMTSF)_2ClO_4. The electronic contribution to heat
transport is found to decrease rapidly below T_c, indicating the absence of
low-energy electronic excitations. We argue that this result provides strong
evidence for a nodeless superconducting gap function but does not exclude a
possible unconventional order parameter.Comment: 4 pages including 4 figures, submitted to Phys. Rev. Let
Study of impurities in spin-Peierls systems including lattice relaxation
The effects of magnetic and non-magnetic impurities in spin-Peierls systems
are investigated allowing for lattice relaxation and quantum fluctuations. We
show that, in isolated chains, strong bonds form next to impurities, leading to
the appearance of magneto-elastic solitons. Generically, these solitonic
excitations do not bind to impurities. However, interchain elastic coupling
produces an attractive potential at the impurity site which can lead to the
formation of bound states. In addition, we predict that small enough chain
segments do not carry magnetic moments at the ends
Electron-spin-resonance in the doped spin-Peierls compound Cu(1-x)Ni(x)GeO3
ESR-study of the Ni-doped spin-Peierls compound CuGeO3 has been performed in
the frequency range 9-75 GHz. At low temperatures the g-factor is smaller than
the value expected for Cu- and Ni-ions. This anomaly is explained by the
formation of magnetic clusters around the Ni-ions within a nonmagnetic
spin-Peierls matrix. The transition into the AFM-state detected earlier by
neutron scattering for doped samples was studied by means of ESR. For x=0.032 a
gap in the magnetic resonance spectrum is found below the Neel temperature and
the spectrum is well described by the theory of antiferromagnetic resonance
based on the molecular field approximation. For x=0.017 the spectrum below the
Neel point remained gapless. The gapless spectrum of the antiferromagnetic
state in weekly doped samples is attributed to the small value of the Neel
order parameter and to the magnetically disordered spin-Peierls background.Comment: 16 pages, LATEX, 12 figures, submitted to Journal of Physics :
Condensed Matte
Rapid Suppression of the Spin Gap in Zn-doped CuGeO_3 and SrCu_2O_3
The influence of non-magnetic impurities on the spectrum and dynamical spin
structure factor of a model for CuGeO is studied. A simple extension to
Zn-doped is also discussed. Using Exact Diagonalization
techniques and intuitive arguments we show that Zn-doping introduces states in
the Spin-Peierls gap of CuGeO. This effect can beunderstood easily in the
large dimerization limit where doping by Zn creates ``loose'' S=1/2 spins,
which interact with each other through very weak effective antiferromagnetic
couplings. When the dimerization is small, a similar effect is observed but now
with the free S=1/2 spins being the resulting S=1/2 ground state of severed
chains with an odd number of sites. Experimental consequences of these results
are discussed. It is interesting to observe that the spin correlations along
the chains are enhanced by Zn-doping according to the numerical data presented
here. As recent numerical calculations have shown, similar arguments apply to
ladders with non-magnetic impurities simply replacing the tendency to
dimerization in CuGeO by the tendency to form spin-singlets along the rungs
in SrCuO.Comment: 7 pages, 8 postscript figures, revtex, addition of figure 8 and a
section with experimental predictions, submmited to Phys. Rev. B in May 199
Separation of the magnetic phases at the N\'{e}el point in the diluted spin-Peierls magnet CuGeO3
The impurity induced antiferromagnetic ordering of the doped spin-Peierls
magnet Cu(1-x)Mg(x)GeO(3) was studied by ESR technique. Crystals with the Mg
concentration x<4% demonstrate a coexistence of paramagnetic and
antiferromagnetic ESR modes. This coexistence indicates the separation of a
macroscopically uniform sample in the paramagnetic and antiferromagnetic
phases. In the presence of the long-range spin-Peierls order (in a sample with
x=1.71%) the volume of the antiferromagnetic phase immediately below the
N\'{e}el point T_N is much smaller than the volume of the paramagnetic phase.
In the presence of the short-range spin-Peierls order (in samples with x=2.88%,
x= 3.2%) there are comparable volumes of paramagnetic and antiferromagnetic
phases at T=T_N. The fraction of the antiferromagnetic phase increases with
lowering temperature. In the absence of the spin-Peierls dimerization (at
x=4.57%)the whole sample exhibits the transition into the antiferromagnetic
state and there is no phase separation. The phase separation is explained by
the consideration of clusters of staggered magnetization located near impurity
atoms. In this model the areas occupied by coherently correlated spins expand
with decreasing temperature and the percolation of the ordered area through a
macroscopic distance occurs.Comment: 7pages, 10 figure
Unconventional Pairing in Heavy Fermion Metals
The Fermi-liquid theory of superconductivity is applicable to a broad range
of systems that are candidates for unconventional pairing. Fundamental
differences between unconventional and conventional anisotropic superconductors
are illustrated by the unique effects that impurities have on the
low-temperature transport properties of unconventional superconductors. For
special classes of unconventional superconductors the low-temperature transport
coefficients are {\it universal}, i.e. independent of the impurity
concentration and scattering phase shift. The existence of a universal limit
depends on the symmetry of the order parameter and is achieved at low
temperatures , where is the bandwidth
of the impurity induced Andreev bound states. In the case of UPt thermal
conductivity measurements favor an or ground state.
Measurements at ultra-low temperatures should distinguish different pairing
states.Comment: 8 pages in a LaTex (3.0) file plus 5 Figures in PostScript. To appear
in the Proceedings of the XXI International Conference on Low Temperature
Physics held in Prague, 8-14 August 199
- …