15 research outputs found

    Competitive analysis of online inventory problem with interrelated prices

    Get PDF
    This paper investigates the online inventory problem with interrelated prices in which a decision of when and how much to replenish must be made in an online fashion even without concrete knowledge of future prices. Four new online models with different price correlations are proposed in this paper, which are the linear-decrease model, the log-decrease model, the logarithmic model and the exponential model. For the first two models, the online algorithms are developed, and as the performance measure of online algorithm, the upper and lower bounds of competitive ratios of the algorithms are derived respectively. For the exponential and logarithmic models, the online algorithms are proposed by the solution of linear programming and the corresponding competitive ratios are analyzed, respectively. Additionally, the algorithm designed for the exponential model is optimal, and the algorithm for the logarithmic model is optimal only under some certain conditions. Moreover, some numerical examples illustrate that the algorithms based on the dprice-conservative strategy are more suitable when the purchase price fluctuates relatively flat

    Competitive algorithms for unbounded one-way trading

    Get PDF
    In the one-way trading problem, a seller has L units of product to be sold to a sequence σ of buyers u1,u2,…,uσu1,u2,…,uσ arriving online and he needs to decide, for each ui, the amount of product to be sold to ui at the then-prevailing market price pi. The objective is to maximize the seller's revenue. We note that all previous algorithms for the problem need to impose some artificial upper bound M and lower bound m on the market prices, and the seller needs to know either the values of M and m , or their ratio M/mM/m, at the outset....[cont'd

    Data_Sheet_1_Altered metabolites in the periaqueductal gray of COVID-19 patients experiencing headaches: a longitudinal MRS study.pdf

    No full text
    BackgroundHeadache is one of the most common symptoms of acute COVID-19 infection. However, its mechanisms remain poorly understood, and there is a lack of studies investigating changes in the periaqueductal gray (PAG) in COVID-19 patients exhibiting headaches.PurposeThe study aimed to explore the alterations in metabolites of the PAG pre- and post-COVID-19 infection in individuals who suffered from headaches during the acute phase of the disease using proton magnetic resonance spectroscopy (1H-MRS).MethodsFifteen participants who experienced headaches during the acute phase of COVID-19 were recruited. All subjects underwent two proton magnetic resonance spectroscopy (1H-MRS) examinations focusing on the PAG before and after they were infected. Metabolite changes were assessed between the pre- and post-infection groups.ResultsThe combined glutamine and glutamate/total creatine ratio (Glx/tCr) was increased in the PAG following COVID-19 infection. The total choline/total creatine ratio (tCho/tCr) in the pre-infection group was negatively correlated with the duration of headache during the COVID-19 acute phase.ConclusionThe present study indicates that PAG plays a pivotal role in COVID-19 headaches, thereby supporting the involvement of trigeminovascular system activation in the pathophysiology of COVID-19 headaches.</p

    Method for dynamic load location identification based on FRF decomposition

    No full text
    The location identification of dynamic load is an important part of load-identification technology. Traditional methods are mostly aimed at the identification of dynamic load’s amplitude and phase. A new method for dynamic load location identification is proposed in this paper. An amplitude ratio or a phase difference between structural dynamic response signals is only related to the frequency response function (FRF), which is a complex-valued function that implies the location information of the load to be identified. In this method, the amplitude and phase variables of the excitation can be eliminated with symbolic calculations, and the location variables can be extracted from the FRF in a complex-number field. An excitation location can be identified quickly with parameter optimization using a Genetic Algorithm (GA), avoiding the ill-posed problem caused by matrix inversion. Numerical simulations and experiments demonstrate that this method can realize the fast recognition of several excitation positions, and has a high recognition accuracy, a short calculation time and a strong anti-noise ability.</p

    Table_1_The accumulation of active ingredients of Polygonatum cyrtonema Hua is associated with soil characteristics and bacterial community.XLSX

    No full text
    IntroductionWith the increasing demand for health products derived from Polygonati rhizoma (PR), people begin to artificially plant Polygonatum cyrtonema Hua (P. cyrtonema) in the middle and lower reaches of the Yangtze River. To promote P. cyrtonema cultivation and increase farmers’ income, efforts are needed to understand the ways to obtain high-quality PR under artificial cultivation conditions.MethodsRhizomes of artificial planting P. cyrtonema and rhizosphere soils were collected across five regions in Zhejiang Province, China. Subsequently, the contents of the main active ingredients of P. cyrtonema and soil properties were analyzed, and both rhizosphere and endophytic bacteria of P. cyrtonema were detected by 16S rDNA sequencing. The relationship between the active ingredients and soil properties, and the dominant bacteria were investigated by correlation analysis.ResultsThe content of active ingredients of P. cyrtonema from the five regions varied significantly, especially polysaccharides and saponins. High-throughput sequencing demonstrated that Proteobacteria was the dominant bacterial phylum in all samples, and Burkholderia-Caballeronia-Paraburkholderia was the main endophytic bacterial genus in rhizome. In addition, the bacterial diversity and richness of rhizosphere soil samples were higher than those of rhizome samples. Soil physicochemical properties and enzyme activities were significantly different across regions, leading to notable variations in the community structures of rhizosphere and endophytic bacteria. Redundancy analysis (RDA) displayed that pH and urease (UE) were the major factors altering shifting rhizosphere bacteria community structure. Moreover, the composition and diversity of rhizome endophytic bacteria were principally affected by both soil physicochemical properties and soil enzyme activities. Soil properties and bacteria from rhizosphere soil and rhizome had a considerable impact on certain active ingredients in P. cyrtonema under artificial cultivation conditions after Pearson correlation analysis. Polysaccharides were significantly correlated with nutrient-rich soil and endophytic bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Ralstonia, and Bacillus. However, flavonoids were associated with nutrient-poor soil. Saponins were positively correlated with OM and available phosphorous (AP) and were significantly negatively affected by rhizosphere bacterial communities.ConclusionThe study demonstrated that bacterial microorganisms were involved in the accumulation of active ingredients of P. cyrtonema together with soil physicochemical properties and enzyme activities, which provided a theoretical basis for the scientific and effective artificial cultivation of high-quality P. cyrtonema.</p

    Table_2_The accumulation of active ingredients of Polygonatum cyrtonema Hua is associated with soil characteristics and bacterial community.XLSX

    No full text
    IntroductionWith the increasing demand for health products derived from Polygonati rhizoma (PR), people begin to artificially plant Polygonatum cyrtonema Hua (P. cyrtonema) in the middle and lower reaches of the Yangtze River. To promote P. cyrtonema cultivation and increase farmers’ income, efforts are needed to understand the ways to obtain high-quality PR under artificial cultivation conditions.MethodsRhizomes of artificial planting P. cyrtonema and rhizosphere soils were collected across five regions in Zhejiang Province, China. Subsequently, the contents of the main active ingredients of P. cyrtonema and soil properties were analyzed, and both rhizosphere and endophytic bacteria of P. cyrtonema were detected by 16S rDNA sequencing. The relationship between the active ingredients and soil properties, and the dominant bacteria were investigated by correlation analysis.ResultsThe content of active ingredients of P. cyrtonema from the five regions varied significantly, especially polysaccharides and saponins. High-throughput sequencing demonstrated that Proteobacteria was the dominant bacterial phylum in all samples, and Burkholderia-Caballeronia-Paraburkholderia was the main endophytic bacterial genus in rhizome. In addition, the bacterial diversity and richness of rhizosphere soil samples were higher than those of rhizome samples. Soil physicochemical properties and enzyme activities were significantly different across regions, leading to notable variations in the community structures of rhizosphere and endophytic bacteria. Redundancy analysis (RDA) displayed that pH and urease (UE) were the major factors altering shifting rhizosphere bacteria community structure. Moreover, the composition and diversity of rhizome endophytic bacteria were principally affected by both soil physicochemical properties and soil enzyme activities. Soil properties and bacteria from rhizosphere soil and rhizome had a considerable impact on certain active ingredients in P. cyrtonema under artificial cultivation conditions after Pearson correlation analysis. Polysaccharides were significantly correlated with nutrient-rich soil and endophytic bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Ralstonia, and Bacillus. However, flavonoids were associated with nutrient-poor soil. Saponins were positively correlated with OM and available phosphorous (AP) and were significantly negatively affected by rhizosphere bacterial communities.ConclusionThe study demonstrated that bacterial microorganisms were involved in the accumulation of active ingredients of P. cyrtonema together with soil physicochemical properties and enzyme activities, which provided a theoretical basis for the scientific and effective artificial cultivation of high-quality P. cyrtonema.</p

    Table_4_The accumulation of active ingredients of Polygonatum cyrtonema Hua is associated with soil characteristics and bacterial community.XLSX

    No full text
    IntroductionWith the increasing demand for health products derived from Polygonati rhizoma (PR), people begin to artificially plant Polygonatum cyrtonema Hua (P. cyrtonema) in the middle and lower reaches of the Yangtze River. To promote P. cyrtonema cultivation and increase farmers’ income, efforts are needed to understand the ways to obtain high-quality PR under artificial cultivation conditions.MethodsRhizomes of artificial planting P. cyrtonema and rhizosphere soils were collected across five regions in Zhejiang Province, China. Subsequently, the contents of the main active ingredients of P. cyrtonema and soil properties were analyzed, and both rhizosphere and endophytic bacteria of P. cyrtonema were detected by 16S rDNA sequencing. The relationship between the active ingredients and soil properties, and the dominant bacteria were investigated by correlation analysis.ResultsThe content of active ingredients of P. cyrtonema from the five regions varied significantly, especially polysaccharides and saponins. High-throughput sequencing demonstrated that Proteobacteria was the dominant bacterial phylum in all samples, and Burkholderia-Caballeronia-Paraburkholderia was the main endophytic bacterial genus in rhizome. In addition, the bacterial diversity and richness of rhizosphere soil samples were higher than those of rhizome samples. Soil physicochemical properties and enzyme activities were significantly different across regions, leading to notable variations in the community structures of rhizosphere and endophytic bacteria. Redundancy analysis (RDA) displayed that pH and urease (UE) were the major factors altering shifting rhizosphere bacteria community structure. Moreover, the composition and diversity of rhizome endophytic bacteria were principally affected by both soil physicochemical properties and soil enzyme activities. Soil properties and bacteria from rhizosphere soil and rhizome had a considerable impact on certain active ingredients in P. cyrtonema under artificial cultivation conditions after Pearson correlation analysis. Polysaccharides were significantly correlated with nutrient-rich soil and endophytic bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Ralstonia, and Bacillus. However, flavonoids were associated with nutrient-poor soil. Saponins were positively correlated with OM and available phosphorous (AP) and were significantly negatively affected by rhizosphere bacterial communities.ConclusionThe study demonstrated that bacterial microorganisms were involved in the accumulation of active ingredients of P. cyrtonema together with soil physicochemical properties and enzyme activities, which provided a theoretical basis for the scientific and effective artificial cultivation of high-quality P. cyrtonema.</p

    Table_3_The accumulation of active ingredients of Polygonatum cyrtonema Hua is associated with soil characteristics and bacterial community.XLSX

    No full text
    IntroductionWith the increasing demand for health products derived from Polygonati rhizoma (PR), people begin to artificially plant Polygonatum cyrtonema Hua (P. cyrtonema) in the middle and lower reaches of the Yangtze River. To promote P. cyrtonema cultivation and increase farmers’ income, efforts are needed to understand the ways to obtain high-quality PR under artificial cultivation conditions.MethodsRhizomes of artificial planting P. cyrtonema and rhizosphere soils were collected across five regions in Zhejiang Province, China. Subsequently, the contents of the main active ingredients of P. cyrtonema and soil properties were analyzed, and both rhizosphere and endophytic bacteria of P. cyrtonema were detected by 16S rDNA sequencing. The relationship between the active ingredients and soil properties, and the dominant bacteria were investigated by correlation analysis.ResultsThe content of active ingredients of P. cyrtonema from the five regions varied significantly, especially polysaccharides and saponins. High-throughput sequencing demonstrated that Proteobacteria was the dominant bacterial phylum in all samples, and Burkholderia-Caballeronia-Paraburkholderia was the main endophytic bacterial genus in rhizome. In addition, the bacterial diversity and richness of rhizosphere soil samples were higher than those of rhizome samples. Soil physicochemical properties and enzyme activities were significantly different across regions, leading to notable variations in the community structures of rhizosphere and endophytic bacteria. Redundancy analysis (RDA) displayed that pH and urease (UE) were the major factors altering shifting rhizosphere bacteria community structure. Moreover, the composition and diversity of rhizome endophytic bacteria were principally affected by both soil physicochemical properties and soil enzyme activities. Soil properties and bacteria from rhizosphere soil and rhizome had a considerable impact on certain active ingredients in P. cyrtonema under artificial cultivation conditions after Pearson correlation analysis. Polysaccharides were significantly correlated with nutrient-rich soil and endophytic bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Ralstonia, and Bacillus. However, flavonoids were associated with nutrient-poor soil. Saponins were positively correlated with OM and available phosphorous (AP) and were significantly negatively affected by rhizosphere bacterial communities.ConclusionThe study demonstrated that bacterial microorganisms were involved in the accumulation of active ingredients of P. cyrtonema together with soil physicochemical properties and enzyme activities, which provided a theoretical basis for the scientific and effective artificial cultivation of high-quality P. cyrtonema.</p

    Manipulation of Electronic States of Pt Sites via d‑Band Center Tuning for Enhanced Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells

    No full text
    Expediting the torpid kinetics of the oxygen reduction reaction (ORR) at the cathode with minimal amounts of Pt under acidic conditions plays a significant role in the development of proton exchange membrane fuel cells (PEMFCs). Herein, a novel Pt–N–C system consisting of Pt single atoms and nanoparticles anchored onto the defective carbon nanofibers is proposed as a highly active ORR catalyst (denoted as Pt–N–C). Detailed characterizations together with theoretical simulations illustrate that the strong coupling effect between different Pt sites can enrich the electron density of Pt sites, modify the d-band electronic environments, and optimize the oxygen intermediate adsorption energies, ultimately leading to significantly enhanced ORR performance. Specifically, the as-designed Pt–N–C demonstrates exceptional ORR properties with a high half-wave potential of 0.84 V. Moreover, the mass activity of Pt–N–C reaches 193.8 mA gPt–1 at 0.9 V versus RHE, which is 8-fold greater than that of Pt/C, highlighting the enormously improved electrochemical properties. More impressively, when integrated into a membrane electrode assembly as cathode in an air-fed PEMFC, Pt–N–C achieved a higher maximum power density (655.1 mW cm–2) as compared to Pt/C-based batteries (376.25 mW cm–2), hinting at the practical application of Pt–N–C in PEMFCs
    corecore