120 research outputs found
Experimental Study for Optimizing Pedestrian Flows at Bottlenecks of Subway Stations
In subway stations, bottlenecks are the narrowed areas that reduce pedestrian flows in channels. Because pedestrians at bottlenecks are forced to dense together, bottlenecks decrease flow efficiency and pedestrians’ transfer comfort and may trigger serious crowd disasters such as trampling. This study used pedestrian experiments to investigate the methods of optimizing pedestrian traffic at bottlenecks of subway stations. Three optimization measures were proposed and evaluated by analyzing the characteristics of pedestrian flows, including efficiency, smoothness, and security. In this paper, setting the rear sides of the bottleneck entrance as straight and surface funnel shapes is called straight funnel shape and surface funnel shape, respectively. Setting a column at a bottleneck is called the column obstacle. The results showed that when efficiency or security come first, a column on the left is recommended; when comfort comes first, a concave funnel is recommended; when comprehensiveness is prioritized, a column on the left is recommended. Moreover, the larger the volume, the optimization is more obvious. Although many bottlenecks cannot be prevented when subway stations are constructed, the proposed optimization measures may help ease their adverse effects by improving facility efficiency, smoothness, and security, and by providing recommendations for designing and managing subway stations.</p
A case report of heat stroke with early severe brain edema
Heat stroke can be divided into two types: exertional and classic, mainly manifested as a clear history of exposure to hot temperature/high heat environment or intense physical activity in hot environment, core temperature exceeding 40 ℃, accompanied by central nervous system changes (altered consciousness, epilepsy, psychiatric symptoms, etc.) and multiple organ damage, including respiratory failure, impaired liver and kidney function, rhabdomyolysis, coagulation disorders, abdominal distension, and diarrhea. Its pathology may be manifested as organ endothelial cell damage, inflammatory response, extensive thrombosis, and bleeding tendency. The main treatment measures are cooling therapy, and when combined with other organ damage, organ support or replacement therapy should be carried out in time, including blood transfusion to improve coagulation function and blood purification therapy. Hyperbaric oxygen therapy may improve the prognosis of patients with ischemic hypoxic encephalopathy. We reported a case of a firefighter with sudden impaired consciousness and high fever during forest fire fighting. The patient was sent to a local hospital and his head computed tomography (CT) results showed unclear cerebral gyrus, suggesting severe cerebral edema, and finally diagnosed as heat stroke. After being transferred to Liuzhou Workers' Hospital, his condition continued to deteriorate and signs of multiple organ failure appeared. The patient's cerebral edema was reversed and further development of heat stroke was prevented through early cooling, sedation and anti-epilepsy, endotracheal intubation ventilator-assisted breathing, anti-infection, fluid resuscitation, infusion of fresh frozen plasma and platelets to improve coagulation function, immunomodulatory therapy, renal replacement therapy, and timely artificial liver therapy. Hyperbaric oxygen therapy was ordered during the rehabilitation phase, and the patient recovered well at discharge, leaving no obvious neurological sequelae. Its prognosis is much better than that predicted at admission
The relationship between BSP mRNA expression and 25(OH)D/OPG in peripheral blood of newly diagnosed T2DM patients with different bone mass
Introduction: The objective of the study was to detect the levels of osteoprotegerin (OPG) and 25-hydroxyvitamin D [25(OH)D], as well as the expression of bone sialoprotein (BSP) mRNA, in the peripheral blood of patients with newly diagnosed type 2 diabetes mellitus (T2DM) under different bone mass conditions, and to explore its role and significance in the development process of T2DM combined with osteoporosis (OP). Material and methods: A total of 225 patients hospitalised in the Endocrinology Department and General Department from May 2017 to May 2018 were enrolled and categorised into five groups: the pure T2DM group (group A, 45 patients), the bone mass reduction group (group B, 45 patients), the T2DM + bone mass reduction group (group C, 45 patients), the OP group (group D, 45 patients), and the T2DM + OP group (group E, 45 patients); meanwhile, age-matched healthy subjects undergoing physical examination in our hospital were collected as the normal control group (group NC, 45 cases). Logistic regression analysis was used to analyse the influencing factors of bone mass in patients with T2DM. Results: Compared with group B, the expression levels of glycated haemoglobin (HbA1c), 25(OH)D, N-terminal propeptide of type I procollagen (PINP), fasting plasma glucose (FPG), fasting plasma insulin (FINS), high-density lipoprotein cholesterol (HDL-C), and BSP mRNA were significantly increased while OPG and b-collagen degradation products (b-CTX) were significantly decreased in group A. Conclusion: The expression of BSP mRNA and the decrease of 25(OH)D and OPG in peripheral blood may participate in the development of diabetes and osteoporosis
Stability of the 3D MHD equations without vertical dissipation near an equilibrium
Important progress has been made on the standard Laplacian case with mixed partial dissipation and diffusion. The stability problem of the 3D incompressible magnetohydrodynamic (MHD) equations without vertical dissipation but with the fractional velocity dissipation and magnetic diffusion is unfortunately not often well understood for many ranges of fractional powers. This paper discovers that there are new phenomena with the case . We establish that, if an initial datum () in the Sobolev space is close enough to the equilibrium state, and we replace the terms and by and , respectively, the resulting equations with then always lead to a steady solution, where
A Dynamic Time Warping Algorithm Based Analysis of Pedestrian Shockwaves at Bottleneck
Since the quantitative methodology analysis of the high-density pedestrian shockwaves at a bottleneck is limited, this paper proposes a dynamic time warping (DTW) algorithm for identifying, analyzing, and verifying the shockwaves. A set of real-world trajectory data is used to illustrate the proposed algorithm. Results show that the DTW algorithm is capable of depicting the pedestrian shockwaves elaborately and accurately. Results also show that the shockwave velocity is unsteady, as throughout time the gathering wave velocity and the evanescent wave velocity are decreasing and increasing, respectively. The mutual influence between followers and leaders is decreased when the shockwave spreads. There is a linear relationship between the shockwave velocity and density. Furthermore, singularities present a potential match solution to help identify the changing of pedestrian behaviors. The DTW algorithm for evaluating the pedestrian system stability has significant intrinsic features in the pedestrian traffic control and management
Rheological Properties of Polysaccharides from Longan ( Dimocarpus longan
Longan polysaccharide (LP) was extracted from longan (Dimocarpus longan Lour.) pulp. The composition and rheological properties were determined by chemical analysis and dynamic shear rheometer. The flow behavior and viscoelastic behavior of longan polysaccharide (LP) solution were investigated by steady shear and small amplitude oscillatory shear (SAOS) experiments, respectively. The result shows that the solution is a pseudoplastic flow in a range of shear rate (1–100 s−1). The rheological behavior of LP was influenced by cations such as Na+ and Ca2+. With an increase of apparent viscosity, G′ and G′′ were accompanied by addition of Na+ and Ca2+
ELISA based assays to measure adenosine deaminases concentration in serum and saliva for the diagnosis of ADA2 deficiency and cancer
Adenosine deaminases (ADAs) are enzymes of purine metabolism converting adenosine to inosine. There are two types of ADAs in humans ADA1 and ADA2. While both ADA1 and ADA2 share the same substrate, they differ in expression, cellular localization, and catalytic properties. The genetic deficiency of ADA1 results in severe combined immunodeficiency (SCID), while lack in ADA2 (DADA2) results in multiple phenotypes ranging from systemic inflammation to vascular pathology. Clinical studies have shown that the levels of ADAs in biological fluids are altered in pathophysiological conditions, suggesting that ADA activity could be a convenient marker for the diagnosis of immune diseases and cancer. Here, we describe sensitive and straightforward ELISA assays to measure ADA1 and ADA2 concentrations in biological fluids. Analysis of the serum and saliva samples from the healthy controls and DADA2 patients revealed that ADA2 enzyme concentration is significantly lower in patients than in healthy controls. In contrast, the concentration of ADA2 increases in the serum of patients with large granular leukocyte leukemia (LGLL) and patients' saliva with head and neck cancer. Thus, this simple, non-invasive method allows for distinguishing healthy controls from the affected patient. It can be implemented in screening and diagnosis of DADA2 and follow up the treatment of LGLL and several types of head and neck cancer
Biochemistry and Molecular Biology MicroRNA Signature in Wound Healing Following Excimer Laser Ablation: Role of miR-133b on TGFb1, CTGF, SMA, and COL1A1 Expression Levels in Rabbit Corneal Fibroblasts
PURPOSE. The role of microRNA (miRNA) regulation in corneal wound healing and scar formation has yet to be elucidated. This study analyzed the miRNA expression pattern involved in corneal wound healing and focused on the effect of miR-133b on expression of several profibrotic genes. METHODS. Laser-ablated mouse corneas were collected at 0 and 30 minutes and 2 days. Ribonucleic acid was collected from corneas and analyzed using cell differentiation and development miRNA PCR arrays. Luciferase assay was used to determine whether miR-133b targeted the 3 0 untranslated region (UTR) of transforming growth factor b1 (TGFb1) and connective tissue growth factor (CTGF) in rabbit corneal fibroblasts (RbCF). Quantitative realtime PCR (qRT-PCR) and Western blots were used to determine the effect of miR-133b on CTGF, smooth muscle actin (SMA), and collagen (COL1A1) in RbCF. Migration assay was used to determine the effect of miR-133b on RbCF migration. RESULTS. At day 2, 37 of 86 miRNAs had substantial expression fold changes. miR-133b had the greatest fold decrease at À14.33. Pre-miR-133b targeted the 3 0 UTR of CTGF and caused a significant decrease of 38% (P < 0.01). Transforming growth factor b1-treated RbCF had a significant decrease of miR-133b of 49% (P < 0.01), whereas CTGF, SMA, and COL1A1 had significant increases of 20%, 54%, and 37% (P < 0.01), respectively. The RbCF treated with TGFb1 and pre-miR133b showed significant decreases in expression of CTGF, SMA, and COL1A1 of 30%, 37%, and 28% (P < 0.01), respectively. Finally, there was significant decrease in migration of miR-133b-treated RbCF. CONCLUSIONS. Significant changes occur in key miRNAs during early corneal wound healing, suggesting novel miRNA targets to reduce scar formation. Keywords: CTGF, microRNA, corneal wound healing, gene expression A fter corneal trauma, stromal wound healing is the result of a complex cascade of multiple factors including growth factors, cytokines, chemokines, proteases, and, most recently discovered, microRNAs (miRNAs). Directly after epithelial damage, the process of healing is initiated by multiple cytokines and growth factors released by the epithelial cells, keratocytes/ corneal fibroblast, and/or the lacrimal gland
ELISA based assays to measure adenosine deaminases concentration in serum and saliva for the diagnosis of ADA2 deficiency and cancer
Adenosine deaminases (ADAs) are enzymes of purine metabolism converting adenosine to inosine. There are two types of ADAs in humans ADA1 and ADA2. While both ADA1 and ADA2 share the same substrate, they differ in expression, cellular localization, and catalytic properties. The genetic deficiency of ADA1 results in severe combined immunodeficiency (SCID), while lack in ADA2 (DADA2) results in multiple phenotypes ranging from systemic inflammation to vascular pathology. Clinical studies have shown that the levels of ADAs in biological fluids are altered in pathophysiological conditions, suggesting that ADA activity could be a convenient marker for the diagnosis of immune diseases and cancer. Here, we describe sensitive and straightforward ELISA assays to measure ADA1 and ADA2 concentrations in biological fluids. Analysis of the serum and saliva samples from the healthy controls and DADA2 patients revealed that ADA2 enzyme concentration is significantly lower in patients than in healthy controls. In contrast, the concentration of ADA2 increases in the serum of patients with large granular leukocyte leukemia (LGLL) and patients’ saliva with head and neck cancer. Thus, this simple, non-invasive method allows for distinguishing healthy controls from the affected patient. It can be implemented in screening and diagnosis of DADA2 and follow up the treatment of LGLL and several types of head and neck cancer
- …