79,722 research outputs found
Thermodynamical quantities of lattice full QCD from an efficient method
I extend to QCD an efficient method for lattice gauge theory with dynamical
fermions. Once the eigenvalues of the Dirac operator and the density of states
of pure gluonic configurations at a set of plaquette energies (proportional to
the gauge action) are computed, thermodynamical quantities deriving from the
partition function can be obtained for arbitrary flavor number, quark masses
and wide range of coupling constants, without additional computational cost.
Results for the chiral condensate and gauge action are presented on the
lattice at flavor number , 1, 2, 3, 4 and many quark masses and coupling
constants. New results in the chiral limit for the gauge action and its
correlation with the chiral condensate, which are useful for analyzing the QCD
chiral phase structure, are also provided.Comment: Latex, 11 figures, version accepted for publicatio
Probing the QCD Critical Point with Higher Moments of Net-proton Multiplicity Distributions
Higher moments of event-by-event net-proton multiplicity distributions are
applied to search for the QCD critical point in the heavy ion collisions. It
has been demonstrated that higher moments as well as moment products are
sensitive to the correlation length and directly connected to the thermodynamic
susceptibilities computed in the Lattice QCD and Hadron Resonance Gas (HRG)
model. In this paper, we will present measurements for kurtosis (),
skewness () and variance () of net-proton multiplicity
distributions at the mid-rapidity () and GeV/ for
Au+Au collisions at =19.6, 39, 62.4, 130 and 200 GeV, Cu+Cu
collisions at =22.4, 62.4 and 200 GeV, d+Au collisions at
=200 GeV and p+p collisions at =62.4 and 200 GeV.
The moment products and of net-proton
distributions, which are related to volume independent baryon number
susceptibility ratio, are compared to the Lattice QCD and HRG model
calculations. The and of net-proton
distributions are consistent with Lattice QCD and HRG model calculations at
high energy, which support the thermalization of the colliding system.
Deviations of and for the Au+Au collisions at
low energies from HRG model calculations are also observed.Comment: 10 pages, 8 figures, Proceedings of 27th Winter Workshon on Nuclear
Dynamics. Feb. 6-13 (2011
Nonlinear Realization of Spontaneously Broken N=1 Supersymmetry Revisited
This paper revisits the nonlinear realization of spontaneously broken N=1
supersymmetry. It is shown that the constrained superfield formalism can be
reinterpreted in the language of standard realization of nonlinear
supersymmetry via a new and simpler route. Explicit formulas of actions are
presented for general renormalizable theories with or without gauge
interactions. The nonlinear Wess-Zumino gauge is discussed and relations are
pointed out for different definitions of gauge fields. In addition, a general
procedure is provided to deal with theories of arbitrary Kahler potentials.Comment: 1+18 pages, LaTe
- …