286 research outputs found

    Theoretical studies of volatile processes in the outer solar system

    Get PDF
    Four studies of volatile processes in the outer solar system are discussed. Researchers suggest that the convective and conductive regions of Triton's atmosphere join at the tropopause near 10 km. A model of volatile transport on Triton's surface was constructed that predicts that Triton's surface north of 15 degrees north latitude is experiencing deposition of nitrogen frosts, as are the bright portions of the south polar cap near the equator. Also discussed are numerical models of the evolution of Titan's surface and atmosphere. Results of a study of the rheology of ammonia-water liquids were applied to the icy satellites of the outer solar system. Finally, the researchers examined the frictional heating, sublimation, and re-condensation of grains free-falling into the solar nebula from a surrounding interstellar cloud. The sublimation model includes the effect of various volatile species and accounts for the poor radiating properties of small grains using Mie theory

    Non-solar noble gas abundances in the atmosphere of Jupiter

    Get PDF
    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed

    High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability

    Full text link
    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps a hundred 1000-km "planetary embryos" and a swarm of billions of 1-10 km "planetesimals." During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about ten times more particles than in previous simulations (Raymond et al 2006a, Icarus, 183, 265-282). These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from past 2.5 AU; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets -- such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a "hit or miss" way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects such as planetary mass and location, and giant planet properties.Comment: Astrobiology, in pres

    Equilibrium composition between liquid and clathrate reservoirs on Titan

    Full text link
    Hundreds of lakes and a few seas of liquid hydrocarbons have been observed by the Cassini spacecraft to cover the polar regions of Titan. A significant fraction of these lakes or seas could possibly be interconnected with subsurface liquid reservoirs of alkanes. In this paper, we investigate the interplay that would happen between a reservoir of liquid hydrocarbons located in Titan's subsurface and a hypothetical clathrate reservoir that progressively forms if the liquid mixture diffuses throughout a preexisting porous icy layer. To do so, we use a statistical-thermodynamic model in order to compute the composition of the clathrate reservoir that forms as a result of the progressive entrapping of the liquid mixture. This study shows that clathrate formation strongly fractionates the molecules between the liquid and the solid phases. Depending on whether the structure I or structure II clathrate forms, the present model predicts that the liquid reservoirs would be mainly composed of either propane or ethane, respectively. The other molecules present in the liquid are trapped in clathrates. Any river or lake emanating from subsurface liquid reservoirs that significantly interacted with clathrate reservoirs should present such composition. On the other hand, lakes and rivers sourced by precipitation should contain higher fractions of methane and nitrogen, as well as minor traces of argon and carbon monoxide.Comment: Accepted for publication in Icaru

    Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    Get PDF
    The thermodynamic stability of clathrate hydrate is calculated under a wide range of temperature and pressure conditions applicable to solar system problems, using a statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data on properties of clathrate hydrates and their components. At low pressure, dissociation pressures and partition functions (Langmuir constants) for CO clathrate (hydrate) have been predicted, using the properties of clathrate containing, as guests, molecules similar to CO. The comparable or higher propensity of CO to incorporate in clathrate relative to N_2 is used to argue for high CO-to-N_2 ratios in primordial Titan if N_2 was accreted as clathrate. The relative incorporation of noble gases in clathrate from a solar composition gas at low temperatures is calculated and applied to the case of giant-planet atmospheres and icy satellites. It is argued that nonsolar but well-constrained noble gas abundances will be measured by Galileo in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances in Titan's atmosphere are also predicted under the hypothesis that much of the satellite's methane accreted as clathrate. Double occupancy of clathrate cages by H_2 and CH_4 in contact with a solar composition gas is examined, and it is concluded that potentially important amounts of H_2 may have incorporated in satellites as clathrate. The kinetics of clathrate formation is also examined, and it is suggested that, under thermodynamically appropriate conditions, essentially complete clathration of water ice could have occurred in high-pressure nebulae around giant planets but probably not in the outer solar nebula; comets probably did not aggregate as clathrate. At moderate pressures, the phase diagram for methane clathrate hydrate in the presence of 15% ammonia (relative to water) is constructed, and application to the early Titan atmospheric composition is described. The high-pressure stability of CH_4, N_2, and mixed CH_4-N_2 clathrate hydrate is calculated; conversion back to water and CH_4 and/ or N_2 fluids or solids is predicted for pressures ≳ 12 kilobars (independent of temperature) and temperatures ≳ 320 K (independent of pressure). The effect of ammonia is to shrink the T-P stability field of clathrate with increasing ammonia concentration. These results imply that (1) clathrate is stable throughout the interior of Oberon- and Rhea-sized icy satellites, and (2) clathrate incorporated in the innermost icy regions of Titan would have decomposed, perhaps allowing buoyant methane to rise. Brief speculation on the implications of this conclusion for the origin of surficial methane on Titan is given. A list of suggested experiments and observations to test the theory and its predictions is presented

    Carbon-rich planet formation in a solar composition disk

    Full text link
    The C--to--O ratio is a crucial determinant of the chemical properties of planets. The recent observation of WASP 12b, a giant planet with a C/O value larger than that estimated for its host star, poses a conundrum for understanding the origin of this elemental ratio in any given planetary system. In this paper, we propose a mechanism for enhancing the value of C/O in the disk through the transport and distribution of volatiles. We construct a model that computes the abundances of major C and O bearing volatiles under the influence of gas drag, sublimation, vapor diffusion, condensation and coagulation in a multi--iceline 1+1D protoplanetary disk. We find a gradual depletion in water and carbon monoxide vapors inside the water's iceline with carbon monoxide depleting slower than water. This effect increases the gaseous C/O and decreases the C/H ratio in this region to values similar to those found in WASP 12b's day side atmosphere. Giant planets whose envelopes were accreted inside the water's iceline should then display C/O values larger than those of their parent stars, making them members of the class of so-called ``carbon-rich planets''.Comment: 8 pages, 4 figures, accepted for publication Ap

    The fate of ethane in Titan's hydrocarbon lakes and seas

    Full text link
    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.Comment: Accepted for publication in Icaru
    corecore