84 research outputs found
Influence of surface diffusion on catalytic reactivity of spatially inhomogeneous surfaces mean field modeling
Kinetics of model catalytic processes proceeding on inhomogeneous surfaces is
studied. We employ an extended mean-field model that takes into account surface
inhomogeneities. The influence of surface diffusion of adsorbent on the
kinetics of the catalytic process is investigated. It is shown that diffusion
is responsible for differences in the reaction rate of systems with different
arrangements of active sites. The presence of cooperative effects between
inactive and active sites is demonstrated and the conditions when these effects
are important are discussed. We show that basic catalytic phenomena on
nonuniform surfaces can be studied with mean-field modeling methods.Comment: Submitted to Chemical Physics Letters. Includes supporting material
in Appendice
Single Lipid Extraction: The Anchoring Strength of Cholesterol in Liquid-Ordered and Liquid-Disordered Phases
AbstractCholesterol is important for the formation of microdomains in supported lipid bilayers and is enriched in the liquid-ordered phase. To understand the interactions leading to this enrichment, we developed an AFM-based single-lipid-extraction (SLX) approach that enables us to determine the anchoring strength of cholesterol in the two phases of a phase-separated lipid membrane. As expected, the forces necessary for extracting a single cholesterol molecule from liquid-ordered phases are significantly higher than for extracting it from the liquid-disordered phases. Interestingly, application of the Bell model shows two energy barriers that correlate with the head and full length of the cholesterol molecule. The resulting lifetimes for complete extraction are 90 s and 11 s in the liquid-ordered and liquid-disordered phases, respectively. Molecular dynamics simulations of the very same experiment show similar force profiles and indicate that the stabilization of cholesterol in the liquid-ordered phase is mainly due to nonpolar contacts
Functionalization of the Parylene C Surface Enhances the Nucleation of Calcium Phosphate : Combined Experimental and Molecular Dynamics Simulations Approach
Interactions at the solid-body fluid interfaces play a vital role in bone tissue formation at the implant surface. In this study, fully atomistic molecular dynamics (MD) simulations were performed to investigate interactions between the physiological components of body fluids (Ca2+, HPO42-, H2PO4-, Na+, Cl-, and H2O) and functionalized parylene C surface. In comparison to the native parylene C (-Cl surface groups), the introduction of -OH, -CHO, and -COOH surface groups significantly enhances the interactions between body fluid ions and the polymeric surface. The experimentally observed formation of calcium phosphate nanocrystals is discussed in terms of MD simulations of the calcium phosphate clustering. Surface functional groups promote the clustering of calcium and phosphate ions in the following order: -OH > -CHO > -Cl (parent parylene C) approximate to -COO-. This promoting role of surface functional groups is explained as stimulating the number of Ca2+ and HPO42- surface contacts as well as ion chemisorption. The molecular mechanism of calcium phosphate cluster formation at the functionalized parylene C surface is proposed.Peer reviewe
Atomistic model for nearly quantitative simulations of Langmuir monolayers
Lung surfactant and a tear film lipid layer are examples of biologically relevant macromolecular structures found at the air–water interface. Because of their complexity, they are often studied in terms of simplified lipid layers, the simplest example being a Langmuir monolayer. Given the profound biological significance of these lipid assemblies, there is a need to understand their structure and dynamics on the nanoscale, yet there are not many techniques able to provide this information. Atomistic molecular dynamics simulations would be a tool fit for this purpose; however, the simulation models suggested until now have been qualitative instead of quantitative. This limitation has mainly stemmed from the challenge to correctly describe the surface tension of water with simulation parameters compatible with other biomolecules. In this work, we show that this limitation can be overcome by using the recently introduced four-point OPC water model, whose surface tension for water is demonstrated to be quantitatively consistent with experimental data and which is also shown to be compatible with the commonly employed lipid models. We further establish that the approach of combining the OPC four-point water model with the CHARMM36 lipid force field provides nearly quantitative agreement with experiments for the surface pressure–area isotherm for POPC and DPPC monolayers, also including the experimentally observed phase coexistence in a DPPC monolayer. The simulation models reported in this work pave the way for nearly quantitative atomistic studies of lipid-rich biological structures at air–water interfaces.Peer reviewe
Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure
Purpose: The tear film lipid layer (TFLL) covers the tear film, stabilizing it and providing a protective barrier against the environment. The TFLL is divided into polar and non-polar sublayers, but the interplay between lipid classes in these sublayers and the structure-function relationship of the TFLL remains poorly characterized. This study aims to provide insight into TFLL function by elucidating the interactions between polar and non-polar TFLL lipids at the molecular level. Methods: Mixed films of polar O-acyl-omega-hydroxy fatty acids (OAHFA) or phospholipids and non-polar cholesteryl esters (CE) were used as a model of the TFLL. The organization of the films was studied by using a combination of Brewster angle and fluorescence microscopy in a Langmuir trough system. In addition, the evaporation resistance of the lipid films was evaluated. Results: Phospholipids and OAHFAs induced the formation of a stable multilamellar CE film. The formation of this film was driven by the interdigitation of acyl chains between the monolayer of polar lipids and the CE multilayer lamellae. Surprisingly, the multilayer structure was destabilized by both low and high concentrations of polar lipids. In addition, the CE multilayer was no more effective in resisting the evaporation of water than a polar lipid monolayer. Conclusions: Formation of multilamellar films by major tear film lipids suggest that the TFLL may have a similar structure. Moreover, in contrast to the current understanding, polar TFLL lipids may not mainly act by stabilizing the non-polar TFLL sublayer, but through a direct evaporation resistant effect.Peer reviewe
Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes
Cholesterol renders mammalian cell membranes more compact by reducing the amount of voids in the membrane structure. Because of this, cholesterol is known to regulate the ability of cell membranes to prevent the permeation of water and water-soluble molecules through the membranes. Meanwhile, it is also known that even seemingly tiny modifications in the chemical structure of cholesterol can lead to notable changes in membrane properties. The question is, how significantly do these small changes in cholesterol structure affect the permeability barrier function of cell membranes? In this work, we applied fluorescence methods as well as atomistic molecular dynamics simulations to characterize changes in lipid membrane permeability induced by cholesterol oxidation. The studied 7 beta-hydroxycholesterol (7 beta-OH-chol) and 27-hydroxycholesterol (27-OH-chol) represent two distinct groups of oxysterols, namely, ring- and tail-oxidized cholesterols, respectively. Our previous research showed that the oxidation of the cholesterol tail has only a marginal effect on the structure of a lipid bilayer; however, oxidation was found to disturb membrane dynamics by introducing a mechanism that allows sterol molecules to move rapidly back and forth across the membranebobbing. Herein, we show that bobbing of 27-OH-chol accelerates fluorescence quenching of NBD-lipid probes in the inner leaflet of liposomes by dithionite added to the liposomal suspension. Systematic experiments using fluorescence quenching spectroscopy and microscopy led to the conclusion that the presence of 27-OH-chol increases membrane permeability to the dithionite anion. Atomistic molecular dynamics simulations demonstrated that 27-OH-chol also facilitates water transport across the membrane. The results support the view that oxysterol bobbing gives rise to successive perturbations to the hydrophobic core of the membrane, and these perturbations promote the permeation of water and small water-soluble molecules through a lipid bilayer. The observed impairment of permeability can have important consequences for eukaryotic organisms. The effects described for 27-OH-chol were not observed for 7 beta-OH-chol which represents ring-oxidized sterols.Peer reviewe
- …