2,587 research outputs found
When topic models disagree: keyphrase extraction with mulitple topic models
We explore how the unsupervised extraction of topic-related keywords benefits from combining multiple topic models. We show that averaging multiple topic models, inferred from different corpora, leads to more accurate keyphrases than when using a single topic model and other state-of-the-art techniques. The experiments confirm the intuitive idea that a prerequisite for the significant benefit of combining multiple models is that the models should be sufficiently different, i.e., they should provide distinct contexts in terms of topical word importance
Knowledge Base Population using Semantic Label Propagation
A crucial aspect of a knowledge base population system that extracts new
facts from text corpora, is the generation of training data for its relation
extractors. In this paper, we present a method that maximizes the effectiveness
of newly trained relation extractors at a minimal annotation cost. Manual
labeling can be significantly reduced by Distant Supervision, which is a method
to construct training data automatically by aligning a large text corpus with
an existing knowledge base of known facts. For example, all sentences
mentioning both 'Barack Obama' and 'US' may serve as positive training
instances for the relation born_in(subject,object). However, distant
supervision typically results in a highly noisy training set: many training
sentences do not really express the intended relation. We propose to combine
distant supervision with minimal manual supervision in a technique called
feature labeling, to eliminate noise from the large and noisy initial training
set, resulting in a significant increase of precision. We further improve on
this approach by introducing the Semantic Label Propagation method, which uses
the similarity between low-dimensional representations of candidate training
instances, to extend the training set in order to increase recall while
maintaining high precision. Our proposed strategy for generating training data
is studied and evaluated on an established test collection designed for
knowledge base population tasks. The experimental results show that the
Semantic Label Propagation strategy leads to substantial performance gains when
compared to existing approaches, while requiring an almost negligible manual
annotation effort.Comment: Submitted to Knowledge Based Systems, special issue on Knowledge
Bases for Natural Language Processin
Topical word importance for fast keyphrase extraction
We propose an improvement on a state-of-the-art keyphrase extraction algorithm, Topical PageRank (TPR), incorporating topical information from topic models. While the original algorithm requires a random walk for each topic in the topic model being used, ours is independent of the topic model, computing but a single PageRank for each text regardless of the amount of topics in the model. This increases the speed drastically and enables it for use on large collections of text using vast topic models, while not altering performance of the original algorithm
Break it Down for Me: A Study in Automated Lyric Annotation
Comprehending lyrics, as found in songs and poems, can pose a challenge to
human and machine readers alike. This motivates the need for systems that can
understand the ambiguity and jargon found in such creative texts, and provide
commentary to aid readers in reaching the correct interpretation. We introduce
the task of automated lyric annotation (ALA). Like text simplification, a goal
of ALA is to rephrase the original text in a more easily understandable manner.
However, in ALA the system must often include additional information to clarify
niche terminology and abstract concepts. To stimulate research on this task, we
release a large collection of crowdsourced annotations for song lyrics. We
analyze the performance of translation and retrieval models on this task,
measuring performance with both automated and human evaluation. We find that
each model captures a unique type of information important to the task.Comment: To appear in Proceedings of EMNLP 201
Conjunctures of democracy erosion:Is Brazil a global paradigm of resilience?
The paper aims to examine and understand the recent developments in Brazilian democracy in a sociological perspective. It offers an analysis of the conjunctural preconditions for the recent rise of authoritarian populism, presenting ways in which Brazil can be viewed as paradigm of democratic erosion and/or resilience. The article describes the foundational premises that made the development of contemporary democracies possible, and it proceeds from this description to explain how features common to authoritarian populist movements in Brazil and elsewhere are detrimental to these premises. It is argued that democracies are likely to thrive when welfare provisions and access to human rights are open to increasing sectors of the population, generating an inclusionary citizenship effect. The political polarization regarding the Brazilian welfare system and the discourse against international human rights, culminated in the weakening of the Brazilian welfare net and setbacks in the recognition of human rights by courts. These processes preceded, and were aggravated by, the rise of authoritarian populism in Brazil, generating an exclusionary view of citizenship that tended to intensify social conflict, with increasing militarization at both governmental and social levels. Arguably, the absence of warfare or an imminent warfare threat in the most recent democratic transition in Brazil reduced the capacity of welfare and constitutional human rights provisions to limit the influence of the military on democracy. While the efforts to build up the welfare system and protect human rights are still ongoing, the militarization element remains latent, posing a constant threat to democratic consolidation in Brazil
Predicting suicide risk from online postings in Reddit : the UGent-IDLab submission to the CLPysch 2019 Shared Task A
This paper describes IDLab’s text classification systems submitted to Task A as part of the CLPsych 2019 shared task. The aim of this shared task was to develop automated systems that predict the degree of suicide risk of people based on their posts on Reddit. Bag-of-words features, emotion features and post level predictions are used to derive user-level predictions. Linear models and ensembles of these models are used to predict final scores. We find that predicting fine-grained risk levels is much more difficult than flagging potentially at-risk users. Furthermore, we do not find clear added value from building richer ensembles compared to simple baselines, given the available training data and the nature of the prediction task
- …