94 research outputs found
Orbital and Maxillofacial Computer Aided Surgery: Patient-Specific Finite Element Models To Predict Surgical Outcomes
This paper addresses an important issue raised for the clinical relevance of
Computer-Assisted Surgical applications, namely the methodology used to
automatically build patient-specific Finite Element (FE) models of anatomical
structures. From this perspective, a method is proposed, based on a technique
called the Mesh-Matching method, followed by a process that corrects mesh
irregularities. The Mesh-Matching algorithm generates patient-specific volume
meshes from an existing generic model. The mesh regularization process is based
on the Jacobian matrix transform related to the FE reference element and the
current element. This method for generating patient-specific FE models is first
applied to Computer-Assisted maxillofacial surgery, and more precisely to the
FE elastic modelling of patient facial soft tissues. For each patient, the
planned bone osteotomies (mandible, maxilla, chin) are used as boundary
conditions to deform the FE face model, in order to predict the aesthetic
outcome of the surgery. Seven FE patient-specific models were successfully
generated by our method. For one patient, the prediction of the FE model is
qualitatively compared with the patient's post-operative appearance, measured
from a Computer Tomography scan. Then, our methodology is applied to
Computer-Assisted orbital surgery. It is, therefore, evaluated for the
generation of eleven patient-specific FE poroelastic models of the orbital soft
tissues. These models are used to predict the consequences of the surgical
decompression of the orbit. More precisely, an average law is extrapolated from
the simulations carried out for each patient model. This law links the size of
the osteotomy (i.e. the surgical gesture) and the backward displacement of the
eyeball (the consequence of the surgical gesture)
Personalized modeling for real-time pressure ulcer prevention in sitting posture
, Ischial pressure ulcer is an important risk for every paraplegic person and
a major public health issue. Pressure ulcers appear following excessive
compression of buttock's soft tissues by bony structures, and particularly in
ischial and sacral bones. Current prevention techniques are mainly based on
daily skin inspection to spot red patches or injuries. Nevertheless, most
pressure ulcers occur internally and are difficult to detect early. Estimating
internal strains within soft tissues could help to evaluate the risk of
pressure ulcer. A subject-specific biomechanical model could be used to assess
internal strains from measured skin surface pressures. However, a realistic 3D
non-linear Finite Element buttock model, with different layers of tissue
materials for skin, fat and muscles, requires somewhere between minutes and
hours to compute, therefore forbidding its use in a real-time daily prevention
context. In this article, we propose to optimize these computations by using a
reduced order modeling technique (ROM) based on proper orthogonal
decompositions of the pressure and strain fields coupled with a machine
learning method. ROM allows strains to be evaluated inside the model
interactively (i.e. in less than a second) for any pressure field measured
below the buttocks. In our case, with only 19 modes of variation of pressure
patterns, an error divergence of one percent is observed compared to the full
scale simulation for evaluating the strain field. This reduced model could
therefore be the first step towards interactive pressure ulcer prevention in a
daily setup. Highlights-Buttocks biomechanical modelling,-Reduced order
model,-Daily pressure ulcer prevention
CT Scan Merging to Enhance Navigation in Interventional Radiology Simulation
International audienceWe present a method to merge two distinct CT scans acquired from dif- ferent patients such that the second scan can supplement the first when it is missing necessary supporting anatomy. The aim is to provide vascular intervention simula- tions with full body anatomy. Often, patient CT scans are confined to a localised region so that the patient is not exposed to more radiation than necessary and to increase scanner throughput. Unfortunately, this localised scanning region may be limiting for some applications where surrounding anatomy may be required and where approximate supporting anatomy is acceptable. The resulting merged scan can enhance body navigation simulations with X-ray rendering by providing a com- plete anatomical reference which may be useful in training and rehearsal. An ex- ample of the use of our CT scan merging technique in the field of interventional radiology is described
3D musculo-skeletal finite element analysis of the foot kinematics under muscle activation with and without ankle arthrodesis
International audienceThe choice between arthrodesis and arthroplasty in the context of advanced ankle arthrosis remains a highly disputed topic in the field of foot and ankle surgery. Arthrodesis, however, represents the most popular option. Biomechanical modeling has been widely used to investigate static loading of cadaveric feet as well as consequences of arthrodesis on bony structures. Although foot kinematics has been studied using motion analysis, this approach lacks accuracy in capturing internal joints motion due to limitations inherent to external “marker sets” and the fact that it imposed the foot to be considered as a rigid solid. The consequences of arthrodesis on kinematics of the unloaded foot are not well understood although it is of crucial importance during the swing phase and at heel contact. Investigating ankle mobility during muscle contraction with and without arthrosis could explain how the motion is produced by extrinsic muscles activations affected by an arthrodesis. This study aims at defining if a biomechanical model with Finite Elements could help arthrodesis understanding
Comparison of LASTIC (Light Aspiration device for in vivo Soft TIssue Characterization) with classic Tensile Tests.
International audienceLASTIC is a device estimating in vivo soft tissue elasticity. It uses negative pressure to deform the tissue surface and captures several deformation stages to trace the behavioral curve. Using Finite Element inverse analysis and a Neo Hookean constitutive law, the tissue's Young modulus is evaluated. This paper compares LASTIC capabilities with standard tensile tests on four samples with elastic properties ranging from 10 kPa to 100 kPa. Although LASTIC overestimates Young modulus by an average of 24 %, it allows a first estimation of the elastic modulus of different materials
Dynamic biomechanical modelling for foot ulcer prevention.
International audienceThis paper introduces a 3D Dynamic Finite Element biomechanical model of the human foot used for diabetic foot pressure ulcer prevention. The model estimates the internal strains and send an alert to the user in case of high strains values
- …
