296 research outputs found

    Energy Consumption Model of WSN Based on Manifold Learning Algorithm

    Get PDF
    Energy saving is one of the most important issues in wireless sensor networks. In order to effectively model the energy consumption -in wireless sensor network, a novel model is proposed based on manifold learning algorithm. Firstly, the components of the energy consumption by computational equations are measured, and the objective function is optimized. Secondly, the parameters in computational equations are estimated by manifold learning algorithm. Finally, the simulation experiments on OPNET and MATLAB Simulink are performed to evaluate the key factors influencing the model. The experimental results show that the proposed model had significant advantage in terms of synchronization accuracy and residual energy in comparison with other methods

    Joint Data and Feature Augmentation for Self-Supervised Representation Learning on Point Clouds

    Full text link
    To deal with the exhausting annotations, self-supervised representation learning from unlabeled point clouds has drawn much attention, especially centered on augmentation-based contrastive methods. However, specific augmentations hardly produce sufficient transferability to high-level tasks on different datasets. Besides, augmentations on point clouds may also change underlying semantics. To address the issues, we propose a simple but efficient augmentation fusion contrastive learning framework to combine data augmentations in Euclidean space and feature augmentations in feature space. In particular, we propose a data augmentation method based on sampling and graph generation. Meanwhile, we design a data augmentation network to enable a correspondence of representations by maximizing consistency between augmented graph pairs. We further design a feature augmentation network that encourages the model to learn representations invariant to the perturbations using an encoder perturbation. We comprehensively conduct extensive object classification experiments and object part segmentation experiments to validate the transferability of the proposed framework. Experimental results demonstrate that the proposed framework is effective to learn the point cloud representation in a self-supervised manner, and yields state-of-the-art results in the community. The source code is publicly available at: https://zhiyongsu.github.io/Project/AFSRL.html

    Hypergraph Convolutional Network based Weakly Supervised Point Cloud Semantic Segmentation with Scene-Level Annotations

    Full text link
    Point cloud segmentation with scene-level annotations is a promising but challenging task. Currently, the most popular way is to employ the class activation map (CAM) to locate discriminative regions and then generate point-level pseudo labels from scene-level annotations. However, these methods always suffer from the point imbalance among categories, as well as the sparse and incomplete supervision from CAM. In this paper, we propose a novel weighted hypergraph convolutional network-based method, called WHCN, to confront the challenges of learning point-wise labels from scene-level annotations. Firstly, in order to simultaneously overcome the point imbalance among different categories and reduce the model complexity, superpoints of a training point cloud are generated by exploiting the geometrically homogeneous partition. Then, a hypergraph is constructed based on the high-confidence superpoint-level seeds which are converted from scene-level annotations. Secondly, the WHCN takes the hypergraph as input and learns to predict high-precision point-level pseudo labels by label propagation. Besides the backbone network consisting of spectral hypergraph convolution blocks, a hyperedge attention module is learned to adjust the weights of hyperedges in the WHCN. Finally, a segmentation network is trained by these pseudo point cloud labels. We comprehensively conduct experiments on the ScanNet and S3DIS segmentation datasets. Experimental results demonstrate that the proposed WHCN is effective to predict the point labels with scene annotations, and yields state-of-the-art results in the community. The source code is available at http://zhiyongsu.github.io/Project/WHCN.html

    Meta-Auxiliary Learning for Adaptive Human Pose Prediction

    Full text link
    Predicting high-fidelity future human poses, from a historically observed sequence, is decisive for intelligent robots to interact with humans. Deep end-to-end learning approaches, which typically train a generic pre-trained model on external datasets and then directly apply it to all test samples, emerge as the dominant solution to solve this issue. Despite encouraging progress, they remain non-optimal, as the unique properties (e.g., motion style, rhythm) of a specific sequence cannot be adapted. More generally, at test-time, once encountering unseen motion categories (out-of-distribution), the predicted poses tend to be unreliable. Motivated by this observation, we propose a novel test-time adaptation framework that leverages two self-supervised auxiliary tasks to help the primary forecasting network adapt to the test sequence. In the testing phase, our model can adjust the model parameters by several gradient updates to improve the generation quality. However, due to catastrophic forgetting, both auxiliary tasks typically tend to the low ability to automatically present the desired positive incentives for the final prediction performance. For this reason, we also propose a meta-auxiliary learning scheme for better adaptation. In terms of general setup, our approach obtains higher accuracy, and under two new experimental designs for out-of-distribution data (unseen subjects and categories), achieves significant improvements.Comment: 10 pages, 6 figures, AAAI 2023 accepte

    Overlooked Poses Actually Make Sense: Distilling Privileged Knowledge for Human Motion Prediction

    Full text link
    Previous works on human motion prediction follow the pattern of building a mapping relation between the sequence observed and the one to be predicted. However, due to the inherent complexity of multivariate time series data, it still remains a challenge to find the extrapolation relation between motion sequences. In this paper, we present a new prediction pattern, which introduces previously overlooked human poses, to implement the prediction task from the view of interpolation. These poses exist after the predicted sequence, and form the privileged sequence. To be specific, we first propose an InTerPolation learning Network (ITP-Network) that encodes both the observed sequence and the privileged sequence to interpolate the in-between predicted sequence, wherein the embedded Privileged-sequence-Encoder (Priv-Encoder) learns the privileged knowledge (PK) simultaneously. Then, we propose a Final Prediction Network (FP-Network) for which the privileged sequence is not observable, but is equipped with a novel PK-Simulator that distills PK learned from the previous network. This simulator takes as input the observed sequence, but approximates the behavior of Priv-Encoder, enabling FP-Network to imitate the interpolation process. Extensive experimental results demonstrate that our prediction pattern achieves state-of-the-art performance on benchmarked H3.6M, CMU-Mocap and 3DPW datasets in both short-term and long-term predictions.Comment: accepted by ECCV202

    DeFeeNet: Consecutive 3D Human Motion Prediction with Deviation Feedback

    Full text link
    Let us rethink the real-world scenarios that require human motion prediction techniques, such as human-robot collaboration. Current works simplify the task of predicting human motions into a one-off process of forecasting a short future sequence (usually no longer than 1 second) based on a historical observed one. However, such simplification may fail to meet practical needs due to the neglect of the fact that motion prediction in real applications is not an isolated ``observe then predict'' unit, but a consecutive process composed of many rounds of such unit, semi-overlapped along the entire sequence. As time goes on, the predicted part of previous round has its corresponding ground truth observable in the new round, but their deviation in-between is neither exploited nor able to be captured by existing isolated learning fashion. In this paper, we propose DeFeeNet, a simple yet effective network that can be added on existing one-off prediction models to realize deviation perception and feedback when applied to consecutive motion prediction task. At each prediction round, the deviation generated by previous unit is first encoded by our DeFeeNet, and then incorporated into the existing predictor to enable a deviation-aware prediction manner, which, for the first time, allows for information transmit across adjacent prediction units. We design two versions of DeFeeNet as MLP-based and GRU-based, respectively. On Human3.6M and more complicated BABEL, experimental results indicate that our proposed network improves consecutive human motion prediction performance regardless of the basic model.Comment: accepted by CVPR202

    Two-dimensional Modelling of Thermal Responses of GFRP Profiles Exposed to ISO-834 Fire

    Get PDF
    In the past three decades, one-dimensional (1-D) thermal model was usually used to estimate the thermal responses of glass fiber-reinforced polymer (GFRP) materials and structures. However, the temperature gradient and mechanical degradation of whole cross sections cannot be accurately evaluated. To address this issue, a two-dimensional (2-D) thermo-mechanical model was developed predict the thermal and mechanical responses of rectangular GFRP tubes subjected to one-side ISO-834 fire exposure in this paper. The 2-D governing heat transfer equations with thermal boundary conditions, discretized by alternating direction implicit (ADI) method, were solved by Gauss-Seidel iterative approach. Then the temperature-dependent mechanical responses were obtained by considering the elastic modulus degradation from glass transition and decomposition of resin. The temperatures of available experimental results can be reasonably predicted. This model can also be extended to simulate the thermo-mechanical responses of beams and columns subjected to multi-side fire loading, which may occur in real fire scenarios

    A Solution to Co-occurrence Bias: Attributes Disentanglement via Mutual Information Minimization for Pedestrian Attribute Recognition

    Full text link
    Recent studies on pedestrian attribute recognition progress with either explicit or implicit modeling of the co-occurrence among attributes. Considering that this known a prior is highly variable and unforeseeable regarding the specific scenarios, we show that current methods can actually suffer in generalizing such fitted attributes interdependencies onto scenes or identities off the dataset distribution, resulting in the underlined bias of attributes co-occurrence. To render models robust in realistic scenes, we propose the attributes-disentangled feature learning to ensure the recognition of an attribute not inferring on the existence of others, and which is sequentially formulated as a problem of mutual information minimization. Rooting from it, practical strategies are devised to efficiently decouple attributes, which substantially improve the baseline and establish state-of-the-art performance on realistic datasets like PETAzs and RAPzs. Code is released on https://github.com/SDret/A-Solution-to-Co-occurence-Bias-in-Pedestrian-Attribute-Recognition.Comment: Accepted in IJCAI2

    Understanding Text-driven Motion Synthesis with Keyframe Collaboration via Diffusion Models

    Full text link
    The emergence of text-driven motion synthesis technique provides animators with great potential to create efficiently. However, in most cases, textual expressions only contain general and qualitative motion descriptions, while lack fine depiction and sufficient intensity, leading to the synthesized motions that either (a) semantically compliant but uncontrollable over specific pose details, or (b) even deviates from the provided descriptions, bringing animators with undesired cases. In this paper, we propose DiffKFC, a conditional diffusion model for text-driven motion synthesis with keyframes collaborated. Different from plain text-driven designs, full interaction among texts, keyframes and the rest diffused frames are conducted at training, enabling realistic generation under efficient, collaborative dual-level control: coarse guidance at semantic level, with only few keyframes for direct and fine-grained depiction down to body posture level, to satisfy animator requirements without tedious labor. Specifically, we customize efficient Dilated Mask Attention modules, where only partial valid tokens participate in local-to-global attention, indicated by the dilated keyframe mask. For user flexibility, DiffKFC supports adjustment on importance of fine-grained keyframe control. Experimental results show that our model achieves state-of-the-art performance on text-to-motion datasets HumanML3D and KIT

    Research on a symmetric non-resonant piezoelectric linear motor

    Get PDF
    Nowadays, piezoelectric linear actuators draw wide attention of researchers around world as its advantages of simple structure, high precision and rapid response. To improve the performance of the non-resonant piezoelectric motor, a symmetric piezoelectric linear motor driven by double-foot is studied in the paper. The vibration model of the stator is established based on the structure and the working mechanism of motor. Then guide mechanism and preload device is designed and a prototype is fabricated to verify the feasibility of structure. The performances of motor under different driving signal are tested in experiment. By applying three-phase square-triangular waves signal and four-phase sine waves signal of peak to peak value 100 V with 50 V offset and frequency of 100 Hz, the speed of prototype reaches 733 μm/s and 667 μm/s and the maximum thrust is 8.34 N and 6.31 N respectively
    corecore