3,759 research outputs found

    The motivic Donaldson-Thomas invariants of (-2) curves

    Get PDF
    In this paper we calculate the motivic Donaldson-Thomas invariants for (-2)-curves arising from 3-fold flopping contractions in the minimal model programme. We translate this geometric situation into the machinery developed by Kontsevich and Soibelman, and using the results and framework developed previously by the authors we describe the monodromy on these invariants. In particular, in contrast to all existing known Donaldson-Thomas invariants for small resolutions of Gorenstein singularities these monodromy actions are nontrivial.Comment: 30 pages, 3 figure

    Knee disorders among carpenters in the St. Louis area

    Get PDF

    Fast integral equation methods for the modified Helmholtz equation

    Get PDF
    We present a collection of integral equation methods for the solution to the two-dimensional, modified Helmholtz equation, u(\x) - \alpha^2 \Delta u(\x) = 0, in bounded or unbounded multiply-connected domains. We consider both Dirichlet and Neumann problems. We derive well-conditioned Fredholm integral equations of the second kind, which are discretized using high-order, hybrid Gauss-trapezoid rules. Our fast multipole-based iterative solution procedure requires only O(N) or O(NlogN)O(N\log N) operations, where N is the number of nodes in the discretization of the boundary. We demonstrate the performance of the methods on several numerical examples.Comment: Published in Computers & Mathematics with Application

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capability for optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles (DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis with structural & packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detail the guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designs and encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncoupled Range Control (URC) was developed for configurations requiring angle of attack and sideslip angle guidance. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing initiation point, while abiding by trajectory constraints for nominal and dispersed trajectories

    An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed

    Endoplasmic reticulum degradation impedes olfactory G-protein coupled receptor functional expression

    Get PDF
    BACKGROUND: Research on olfactory G-protein coupled receptors (GPCRs) has been severely impeded by poor functional expression in heterologous systems. Previously, we demonstrated that inefficient olfactory receptor (OR) expression at the plasma membrane is attributable, in part, to degradation of endoplasmic reticulum (ER)-retained ORs by the ubiquitin-proteasome system and sequestration of ORs in ER aggregates that are degraded by autophagy. Thus, experiments were performed to test the hypothesis that attenuation of ER degradation improves OR functional expression in heterologous cells. RESULTS: To develop means to increase the functional expression of ORs, we devised an approach to measure activation of the mOREG OR (Unigene # Mm.196680; Olfr73) through coupling to an olfactory cyclic nucleotide-gated cation channel (CNG). This system, which utilizes signal transduction machinery coupled to OR activation in native olfactory sensory neurons, was used to demonstrate that degradation, both by the ubiquitin-proteasome system and autophagy, limits mOREG functional expression. The stimulatory effects of proteasome and autophagy inhibitors on mOREG function required export from the ER and trafficking through the biosynthetic pathway. CONCLUSIONS: These findings demonstrate that poor functional expression of mOREG in heterologous cells is improved by blocking proteolysis. Inhibition of ER degradation may improve the function of other ORs and assist future efforts to elucidate the molecular basis of odor discrimination

    Single enzyme direct biomineralization of ZnS, ZnxCd1�xS and ZnxCd1�xS–ZnS quantum confined nanocrystals

    Get PDF
    ZnS, ZnxCd1−xS, and ZnxCd1−xS–ZnS quantum dots were synthesized in the aqueous phase at room temperature via biomineralization enabled by a single enzyme in solution.</p

    Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties

    Get PDF
    Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization

    Single enzyme direct biomineralization of CdSe and CdSe-CdS core-shell quantum dots

    Get PDF
    Biomineralization is the process by which biological systems synthesize inorganic materials. Herein, we demonstrate an engineered cystathionine γ-lyase enzyme, smCSE that is active for the direct aqueous phase biomineralization of CdSe and CdSe-CdS core-shell nanocrystals. The nanocrystals are formed in an otherwise unreactive buffered solution of Cd acetate and selenocystine through enzymatic turnover of the selenocystine to form a reactive precursor, likely H2Se. The particle size of the CdSe core nanocrystals can be tuned by varying the incubation time to generated particle sizes between 2.74 ± 0.63 nm and 4.78 ± 1.16 nm formed after 20 min and 24 h of incubation, respectively. Subsequent purification and introduction of l-cysteine as a sulfur source facilitates the biomineralization of a CdS shell onto the CdSe cores. The quantum yield of the resulting CdSe-CdS core-shell particles is up to 12% in the aqueous phase; comparable to that reported for more traditional chemical synthesis routes for core-shell particles of similar size with similar shell coverage. This single-enzyme route to functional nanocrystals synthesis reveals the powerful potential of biomineralization processes
    corecore