174,947 research outputs found

    Source bearing and steering-vector estimation using partially calibrated arrays

    Get PDF
    The problem of source direction-of-arrival (DOA) estimation using a sensor array is addressed, where some of the sensors are perfectly calibrated, while others are uncalibrated. An algorithm is proposed for estimating the source directions in addition to the estimation of unknown array parameters such as sensor gains and phases, as a way of performing array self-calibration. The cost function is an extension of the maximum likelihood (ML) criteria that were originally developed for DOA estimation with a perfectly calibrated array. A particle swarm optimization (PSO) algorithm is used to explore the high-dimensional problem space and find the global minimum of the cost function. The design of the PSO is a combination of the problem-independent kernel and some newly introduced problem-specific features such as search space mapping, particle velocity control, and particle position clipping. This architecture plus properly selected parameters make the PSO highly flexible and reusable, while being sufficiently specific and effective in the current application. Simulation results demonstrate that the proposed technique may produce more accurate estimates of the source bearings and unknown array parameters in a cheaper way as compared with other popular methods, with the root-mean-squared error (RMSE) approaching and asymptotically attaining the Cramer Rao bound (CRB) even in unfavorable conditions

    Sampling Sparse Signals on the Sphere: Algorithms and Applications

    Get PDF
    We propose a sampling scheme that can perfectly reconstruct a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central to our algorithm is a generalization of the annihilating filter method, a tool widely used in array signal processing and finite-rate-of-innovation (FRI) sampling. The proposed algorithm can reconstruct KK spikes from (K+K)2(K+\sqrt{K})^2 spatial samples. This sampling requirement improves over previously known FRI sampling schemes on the sphere by a factor of four for large KK. We showcase the versatility of the proposed algorithm by applying it to three different problems: 1) sampling diffusion processes induced by localized sources on the sphere, 2) shot noise removal, and 3) sound source localization (SSL) by a spherical microphone array. In particular, we show how SSL can be reformulated as a spherical sparse sampling problem.Comment: 14 pages, 8 figures, submitted to IEEE Transactions on Signal Processin
    • …