1,276 research outputs found

    A duality model of TCP and queue management algorithms

    Get PDF
    We propose a duality model of end-to-end congestion control and apply it to understanding the equilibrium properties of TCP and active queue management schemes. The basic idea is to regard source rates as primal variables and congestion measures as dual variables, and congestion control as a distributed primal-dual algorithm over the Internet to maximize aggregate utility subject to capacity constraints. The primal iteration is carried out by TCP algorithms such as Reno or Vegas, and the dual iteration is carried out by queue management algorithms such as DropTail, RED or REM. We present these algorithms and their generalizations, derive their utility functions, and study their interaction

    Convex Relaxation of Optimal Power Flow, Part II: Exactness

    Get PDF
    This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions under which the convex relaxations are exact.Comment: Citation: IEEE Transactions on Control of Network Systems, June 2014. This is an extended version with Appendex VI that proves the main results in this tutoria

    Convex Relaxation of Optimal Power Flow, Part I: Formulations and Equivalence

    Get PDF
    This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions under which the convex relaxations are exact.Comment: Citation: IEEE Transactions on Control of Network Systems, 15(1):15-27, March 2014. This is an extended version with Appendices VIII and IX that provide some mathematical preliminaries and proofs of the main result

    Reverse Engineering TCP/IP-like Networks using Delay-Sensitive Utility Functions

    Get PDF
    TCP/IP can be interpreted as a distributed primal-dual algorithm to maximize aggregate utility over source rates. It has recently been shown that an equilibrium of TCP/IP, if it exists, maximizes the same delay-insensitive utility over both source rates and routes, provided pure congestion prices are used as link costs in the shortest-path calculation of IP. In practice, however, pure dynamic routing is never used and link costs are weighted sums of both static as well as dynamic components. In this paper, we introduce delay-sensitive utility functions and identify a class of utility functions that such a TCP/IP equilibrium optimizes. We exhibit some counter-intuitive properties that any class of delay-sensitive utility functions optimized by TCP/IP necessarily possess. We prove a sufficient condition for global stability of routing updates for general networks. We construct example networks that defy conventional wisdom on the effect of link cost parameters on network stability and utility

    Simulation comparison of RED and REM

    Get PDF
    We propose earlier an optimization based low control for the Internet called Random Exponential Marking (REM). REM consists of a link algorithm, that probabilistically marks packets inside the network, and a source algorithm, that adapts source rate to observed marking. The marking probability is exponential in a link congestion measure, so that the end-to-end marking probability is exponential in a path congestion measure. Because of the finer measure of congestion provided by REM, sources do not constantly probe the network for spare capacity, but settle around a globally optimal equilibrium, thus avoiding the perpetual cycle of sinking into and recovering from congestion. In this paper we compare the performance of REM with Reno over RED through simulation

    Convex Relaxations and Linear Approximation for Optimal Power Flow in Multiphase Radial Networks

    Get PDF
    Distribution networks are usually multiphase and radial. To facilitate power flow computation and optimization, two semidefinite programming (SDP) relaxations of the optimal power flow problem and a linear approximation of the power flow are proposed. We prove that the first SDP relaxation is exact if and only if the second one is exact. Case studies show that the second SDP relaxation is numerically exact and that the linear approximation obtains voltages within 0.0016 per unit of their true values for the IEEE 13, 34, 37, 123-bus networks and a real-world 2065-bus network.Comment: 9 pages, 2 figures, 3 tables, accepted by Power System Computational Conferenc

    Understanding CHOKe: throughput and spatial characteristics

    Get PDF
    A recently proposed active queue management, CHOKe, is stateless, simple to implement, yet surprisingly effective in protecting TCP from UDP flows. We present an equilibrium model of TCP/CHOKe. We prove that, provided the number of TCP flows is large, the UDP bandwidth share peaks at (e+1)/sup -1/=0.269 when UDP input rate is slightly larger than link capacity, and drops to zero as UDP input rate tends to infinity. We clarify the spatial characteristics of the leaky buffer under CHOKe that produce this throughput behavior. Specifically, we prove that, as UDP input rate increases, even though the total number of UDP packets in the queue increases, their spatial distribution becomes more and more concentrated near the tail of the queue, and drops rapidly to zero toward the head of the queue. In stark contrast to a nonleaky FIFO buffer where UDP bandwidth shares would approach 1 as its input rate increases without bound, under CHOKe, UDP simultaneously maintains a large number of packets in the queue and receives a vanishingly small bandwidth share, the mechanism through which CHOKe protects TCP flows

    Counter-intuitive throughput behaviors in networks under end-to-end control

    Get PDF
    It has been shown that as long as traffic sources adapt their rates to aggregate congestion measure in their paths, they implicitly maximize certain utility. In this paper we study some counter-intuitive throughput behaviors in such networks, pertaining to whether a fair allocation is always inefficient and whether increasing capacity always raises aggregate throughput. A bandwidth allocation policy can be defined in terms of a class of utility functions parameterized by a scalar a that can be interpreted as a quantitative measure of fairness. An allocation is fair if alpha is large and efficient if aggregate throughput is large. All examples in the literature suggest that a fair allocation is necessarily inefficient. We characterize exactly the tradeoff between fairness and throughput in general networks. The characterization allows us both to produce the first counter-example and trivially explain all the previous supporting examples. Surprisingly, our counter-example has the property that a fairer allocation is always more efficient. In particular it implies that maxmin fairness can achieve a higher throughput than proportional fairness. Intuitively, we might expect that increasing link capacities always raises aggregate throughput. We show that not only can throughput be reduced when some link increases its capacity, more strikingly, it can also be reduced when all links increase their capacities by the same amount. If all links increase their capacities proportionally, however, throughput will indeed increase. These examples demonstrate the intricate interactions among sources in a network setting that are missing in a single-link topology
    corecore