232 research outputs found
Recommended from our members
Geometry and electronic structure of iridium adsorbed on graphene
We report investigation of the geometry and electronic structure of iridium atoms adsorbed onto graphene through a combined experimental and theoretical study. Ir atoms were deposited onto a flake of graphene on a Pt(111) surface and found to form clusters even at low temperatures. The areal density of the observed clusters on the graphene flake suggests the clusters are most likely pairs of Ir atoms. Theoretical ab initio density functional (DFT) calculations indicate that these Ir dimers are oriented horizontally, near neighboring "bridge" sites of the graphene lattice, as this configuration has the strongest adsorption energy of all high-symmetry configurations for the Ir dimer. A large peak in the local density of states (LDOS) at the Dirac point energy was measured via scanning tunneling spectroscopy, and this result is reproduced by a DFT calculation of the LDOS. The peak at the Dirac point energy is found to be from the Ir s and p states. The LDOS in the monomer case was also calculated, and is found to significantly differ from the experimentally determined data, further supporting the hypothesis of low-temperature clustering
Recommended from our members
Strong correlations and orbital texture in single-layer 1T-TaSe2
Strong electron correlation can induce Mott insulating behaviour and produce intriguing states of matter such as unconventional superconductivity and quantum spin liquids. Recent advances in van der Waals material synthesis enable the exploration of Mott systems in the two-dimensional limit. Here we report characterization of the local electronic properties of single- and few-layer 1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving scanning tunnelling microscopy and angle-resolved photoemission. Our results indicate that electron correlation induces a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by unusual orbital texture. Interlayer coupling weakens the insulating phase, as shown by reduction of the energy gap and quenching of the correlation-driven orbital texture in bilayer and trilayer 1T-TaSe2. This establishes single-layer 1T-TaSe2 as a useful platform for investigating strong correlation physics in two dimensions
Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3
Topological insulators are a recently discovered class of materials with
fascinating properties: While the inside of the solid is insulating,
fundamental symmetry considerations require the surfaces to be metallic. The
metallic surface states show an unconventional spin texture, electron dynamics
and stability. Recently, surfaces with only a single Dirac cone dispersion have
received particular attention. These are predicted to play host to a number of
novel physical phenomena such as Majorana fermions, magnetic monopoles and
unconventional superconductivity. Such effects will mostly occur when the
topological surface state lies in close proximity to a magnetic or electric
field, a (superconducting) metal, or if the material is in a confined geometry.
Here we show that a band bending near to the surface of the topological
insulator BiSe gives rise to the formation of a two-dimensional
electron gas (2DEG). The 2DEG, renowned from semiconductor surfaces and
interfaces where it forms the basis of the integer and fractional quantum Hall
effects, two-dimensional superconductivity, and a plethora of practical
applications, coexists with the topological surface state in BiSe. This
leads to the unique situation where a topological and a non-topological, easily
tunable and potentially superconducting, metallic state are confined to the
same region of space.Comment: 12 pages, 3 figure
Electrocardiographic Criteria for Left Ventricular Hypertrophy in Children
Previous studies to determine the sensitivity of the electrocardiogram (ECG) for left ventricular hypertrophy (LVH) in children had their imperfections: they were not done on an unselected hospital population, several criteria used in adults were not applied to children, and obsolete limits of normal for the ECG parameters were used. Furthermore, left ventricular mass (LVM) was taken as the reference standard for LVH, with no regard for other clinical evidence. The study population consisted of 832 children from whom a 12-lead ECG and an M-mode echocardiogram were taken on the same day. The validity of the ECG criteria was judged on the basis of an abnormal LVM index, either alone or in combination with other clinical evidence. The ECG criteria were based on recently established age-dependent normal limits. At 95% specificity, the ECG criteria have low sensitivities (<25%) when an elevated LVM index is taken as the reference for LVH. When clinical evidence is also taken into account, the sensitivity improved considerably (<43%). Sensitivities could be further improved when ECG parameters were combined. The sensitivity of the pediatric ECG in detecting LVH is low but depends strongly on the definition of the reference used for validation
Recommended from our members
Neural processes mediating contextual influences on human choice behaviour
Contextual influences on choice are ubiquitous in ecological settings. Current evidence suggests that subjective values are normalized with respect to the distribution of potentially available rewards. However, how this context-sensitivity is realised in the brain remains unknown. To address this, here we examine functional magnetic resonance imaging (fMRI) data during performance of a gambling task where blocks comprise values drawn from one of two different, but partially overlapping, reward distributions or contexts. At the beginning of each block (when information about context is provided), hippocampus is activated and this response is enhanced when contextual influence on choice increases. In addition, response to value in ventral tegmental area/substantia nigra (VTA/SN) shows context-sensitivity, an effect enhanced with an increased contextual influence on choice. Finally, greater response in hippocampus at block start is associated with enhanced context sensitivity in VTA/SN. These findings suggest that context-sensitive choice is driven by a brain circuit involving hippocampus and dopaminergic midbrain
The Genetics and Genomics of Virus Resistance in Maize
Viruses cause significant diseases on maize worldwide. Intensive agronomic practices, changes in vector distribution, and the introduction of vectors and viruses into new areas can result in emerging disease problems. Because deployment of resistant hybrids and cultivars is considered to be both economically viable and environmentally sustainable, genes and quantitative trait loci for most economically important virus diseases have been identified. Examination of multiple studies indicates the importance of regions of maize chromosomes 2, 3, 6, and 10 in virus resistance. An understanding of the molecular basis of virus resistance in maize is beginning to emerge, and two genes conferring resistance to sugarcane mosaic virus, Scmv1 and Scmv2, have been cloned and characterized. Recent studies provide hints of other pathways and genes critical to virus resistance in maize, but further work is required to determine the roles of these in virus susceptibility and resistance. This research will be facilitated by rapidly advancing technologies for functional analysis of genes in maize
Clinical presentation of abdominal tuberculosis in HIV seronegative adults
BACKGROUND: The accurate diagnosis of abdominal tuberculosis usually takes a long time and requires a high index of suspicion in clinic practice. Eighty-eight immune-competent patients with abdominal tuberculosis were grouped according to symptoms at presentation and followed prospectively in order to investigate the effect of symptomatic presentation on clinical diagnosis and prognosis. METHODS: Based upon the clinical presentation, the patients were divided into groups such as non-specific abdominal pain & less prominent in bowel habit, ascites, alteration in bowel habit, acute abdomen and others. Demographic, clinical and laboratory features, coexistence of pulmonary tuberculosis, diagnostic procedures, definitive diagnostic tests, need for surgical therapy, and response to treatment were assessed in each group. RESULTS: According to clinical presentation, five groups were constituted as non-specific abdominal pain (n = 24), ascites (n = 24), bowel habit alteration (n = 22), acute abdomen (n = 9) and others (n = 9). Patients presenting with acute abdomen had significantly higher white blood cell counts (p = 0.002) and abnormalities in abdominal plain radiographs (p = 0.014). Patients presenting with alteration in bowel habit were younger (p = 0.048). The frequency of colonoscopic abnormalities (7.5%), and need for therapeutic surgery (12.5%) were lower in patients with ascites, (p = 0.04) and (p = 0.001), respectively. There was no difference in gender, disease duration, diagnostic modalities, response to treatment, period to initial response, and mortality between groups (p > 0.05). Gastrointestinal tract alone was the most frequently involved part (38.5%), and this was associated with acid-fast bacteria in the sputum (p = 0.003). CONCLUSION: Gastrointestinal tract involvement is frequent in patients with active pulmonary tuberculosis. Although different clinical presentations of patients with abdominal tuberculosis determine diagnostic work up and need for therapeutic surgery, evidence based diagnosis and consequences of the disease does not change
Synaptic scaffold evolution generated components of vertebrate cognitive complexity
The origins and evolution of higher cognitive functions, including complex forms of learning, attention and executive functions, are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 million years ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report, to our knowledge, the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in each of the four Dlg paralogs showed that simple associative learning required Dlg4, whereas Dlg2 and Dlg3 diversified to have opposing functions in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed that Dlg2\u27s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 million years. Dlg-family mutations underlie psychiatric disorders, suggesting that genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness
- …