15 research outputs found
Towards adaptive quality-aware Complex Event Processing in the Internet of Things
This paper investigates how to complement Complex Event Processing (CEP) with dynamic quality monitoring mechanisms and support the dynamic integration of suitable sensory data sources. In the proposed approach, queries to detect complex events are annotated with consumer-definable quality policies that are evaluated and used to autonomously assign (or even configure) suitable data sources of the sensing infrastructure. We present and study different forms of expressing quality policies and explore how they affect the process of quality monitoring including different modes of assessing and applying quality-related adaptations. A performance study in an IoT scenario shows that the proposed mechanisms in supporting quality policy monitoring and adaptively selecting suitable data sources succeed in enhancing the acquired quality of results while fulfilling consumers’ quality requirements. We show that the quality-based selection of sensor sources also extends the network’s lifetime by optimizing the data sources’ energy consumption
Towards Pattern-Level Privacy Protection in Distributed Complex Event Processing
In event processing systems, detected event patterns can revealprivacy-sensitive information. In this paper, we proposeand discuss how to integrate pattern-level privacy protection in event-based systems. Compared to state-of-the-art approaches, we aim to enforce privacy independent of the particularities of specific operators. We accomplish this by supporting the flexible integration of multiple obfuscation techniques and studying deployment strategies for privacy-enforcing mechanisms. Moreover, we share ideas on how to model the adversary’s knowledge to better select appropriate obfuscation techniques for the discussed deployment strategies. Initial results indicate that flexibly choosing obfuscation techniques and deployment strategies is essential to conceal privacy-sensitive event patterns accurately
APP-CEP:Adaptive Pattern-level Privacy Protection in Complex Event Processing Systems
Although privacy-preserving mechanisms endeavor to safeguard sensitive information at the attribute level, detected event patterns can still disclose privacy-sensitive knowledge in distributed complex event processing systems (DCEP). Events might not be inherently sensitive, but their aggregation into a pattern could still breach privacy. In this paper, we study in the context of APP-CEP the problem of integrating pattern-level privacy in event-based systems by selective assignment of obfuscation techniques to conceal private information. Compared to state-of-the-art techniques, we seek to enforce privacy independent of the actual events in streams. To support this, we acquire queries and privacy requirements using CEP-like patterns. The protection of privacy is accomplished through generating pattern dependency graphs, leading to dynamically appointing those techniques that have no consequences on detecting other sensitive patterns, as well as non-sensitive patterns required to provide acceptable Quality of Service. Besides, we model the knowledge that might be possessed by potential adversaries to violate privacy and its impacts on the obfuscation procedure. We assessed the performance of APP-CEP in a real-world scenario involving an online retailer’s transactions. Our evaluationresults demonstrate that APP-CEP successfully provides a privacy-utility trade-off. Modeling the background knowledge also effectively prevents adversaries from realizing the modifications in the input streams
APP-CEP:Adaptive Pattern-level Privacy Protection in Complex Event Processing Systems
Although privacy-preserving mechanisms endeavor to safeguard sensitive information at the attribute level, detected event patterns can still disclose privacy-sensitive knowledge in distributed complex event processing systems (DCEP). Events might not be inherently sensitive, but their aggregation into a pattern could still breach privacy. In this paper, we study in the context of APP-CEP the problem of integrating pattern-level privacy in event-based systems by selective assignment of obfuscation techniques to conceal private information. Compared to state-of-the-art techniques, we seek to enforce privacy independent of the actual events in streams. To support this, we acquire queries and privacy requirements using CEP-like patterns. The protection of privacy is accomplished through generating pattern dependency graphs, leading to dynamically appointing those techniques that have no consequences on detecting other sensitive patterns, as well as non-sensitive patterns required to provide acceptable Quality of Service. Besides, we model the knowledge that might be possessed by potential adversaries to violate privacy and its impacts on the obfuscation procedure. We assessed the performance of APP-CEP in a real-world scenario involving an online retailer’s transactions. Our evaluationresults demonstrate that APP-CEP successfully provides a privacy-utility trade-off. Modeling the background knowledge also effectively prevents adversaries from realizing the modifications in the input streams
Poster: Towards Federated LLM-Powered CEP Rule Generation and Refinement
In traditional event processing systems, patterns representing situations of interest are typically defined by domain experts or learned from historical data. These approaches often make rule generation reactive, time-consuming, and susceptible to human error. In this paper, we propose and investigate the integration of large language models (LLMs) to automate and accelerate query translation and rule generation in event processing systems. Furthermore, we introduce a federated learning schema to refine the initially generated rules by examining them over distributed event streams, ensuring greater accuracy and adaptability.Preliminary results demonstrate the potential of LLMs as a key component in proactively expediting the autonomous rule-generation process. Moreover, our findings suggest that employing customized prompt engineering techniques can further enhance the quality of the generated rules