3,207 research outputs found

    Screening Effects in Superfluid Nuclear and Neutron Matter within Brueckner Theory

    Get PDF
    Effects of medium polarization are studied for 1S0^1S_0 pairing in neutron and nuclear matter. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The selfenergy corrections are consistently included resulting in a strong depletion of the Fermi surface. All medium effects are calculated based on the Brueckner theory. The 1S0^1S_0 gap is determined from the generalized gap equation. The selfenergy corrections always lead to a quenching of the gap, which is enhanced by the screening effect of the pairing potential in neutron matter, whereas it is almost completely compensated by the antiscreening effect in nuclear matter.Comment: 8 pages, 6 Postscript figure

    Neutron star properties in density-dependent relativistic Hartree-Fock theory

    Full text link
    With the equations of state provided by the newly developed density dependent relativistic Hartree-Fock (DDRHF) theory for hadronic matter, the properties of the static and β\beta-equilibrium neutron stars without hyperons are studied for the first time, and compared to the predictions of the relativistic mean field (RMF) models and recent observational data. The influences of Fock terms on properties of asymmetric nuclear matter at high densities are discussed in details. Because of the significant contributions from the σ\sigma- and ω\omega-exchange terms to the symmetry energy, large proton fractions in neutron stars are predicted by the DDRHF calculations, which strongly affect the cooling process of the star. The critical mass about 1.45 MM_\odot, close to the limit 1.5 MM_\odot determined by the modern soft X-ray data analysis, is obtained by DDRHF with the effective interactions PKO2 and PKO3 for the occurrence of direct Urca process in neutron stars. The maximum masses of neutron stars given by the DDRHF calculations lie between 2.45 M_\odot and 2.49 M_\odot, which are in reasonable agreement with high pulsar mass 2.08±0.19M2.08 \pm 0.19 M_\odot from PSR B1516+02B. It is also found that the mass-radius relations of neutron stars determined by DDRHF are consistent with the observational data from thermal radiation measurement in the isolated neutron star RX J1856, QPOs frequency limits in LMXBs 4U 0614+09 and 4U 1636-536, and redshift determined in LMXBs EXO 0748-676.Comment: 28 pages, 11 figure

    Spin-polarized states of nuclear matter

    Get PDF
    The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon EA(δ)E_A(\delta) calculated in the full range of spin polarization δ=ρρρ{\delta} = \frac{\rho_{\uparrow}-\rho_{\downarrow}}{\rho} for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G0G_0. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two body force. The EOS is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.Comment: Contribution to GISELDA Meeting, 14-18 January, 2002 (Frascati), to appear in World Scientific (Singapore

    Medium polarization in asymmetric nuclear matter

    Full text link
    The influence of the core polarization on the effective nuclear interaction of asymmetric nuclear matter is calculated in the framework of the induced interaction theory. The strong isospin dependence of the density and spin density fluctuations is studied along with the interplay between the neutron and proton core polarizations. Moving from symmetric nuclear matter to pure neutron matter the crossover of the induced interaction from attractive to repulsive in the spin singlet state is determined as a function of the isospin imbalance.The density range in which it occurs is also determined. For the spin triplet state the induced interaction turns out to be always repulsive. The implications of the results for the neutron star superfluid phases are shortly discussed.Comment: 6 pages, 4 figure

    Screening of nuclear pairing in nuclear and neutron matter

    Full text link
    The screening potential in the 1S0^1S_0 and 3S1^3S_1 pairing channels in neutron and nuclear matter in different approximations is discussed. It is found that the vertex corrections to the potential are much stronger in nuclear matter than in neutron matter.Comment: 11 pages, 8 figures, revtex4 styl
    corecore