997 research outputs found

    The Gould's Belt Distances Survey

    Full text link
    Very Long Baseline Interferometry (VLBI) observations can provide the position of compact radio sources with an accuracy of order 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and proper motions of any object within 500 pc of the Sun to better than a few percent. Because they are magnetically active, young stars are often associated with compact radio emission detectable using VLBI techniques. Here we will show how VLBI observations have already constrained the distance to the most often studied nearby regions of star-formation (Taurus, Ophiuchus, Orion, etc.) and have started to provide information on their internal structure and kinematics. We will then briefly describe a large project (called The Gould's Belt Distances Survey) designed to provide a detailed view of star-formation in the Solar neighborhood using VLBI observations.Comment: Proceedings of IAU28

    Confirmation of a recent bipolar ejection in the very young hierarchical multiple system IRAS 16293-2422

    Full text link
    We present and analyze two new high-resolution (approx 0.3 arcsec), high-sensitivity (approx 50 uJy beam-1) Very Large Array 3.6 cm observations of IRAS 16293-2422 obtained in 2007 August and 2008 December. The components A2alpha and A2beta recently detected in this system are still present, and have moved roughly symmetrically away from source A2 at a projected velocity of 30-80 km s-1. This confirms that A2alpha and A2beta were formed as a consequence of a very recent bipolar ejection from A2. Powerful bipolar ejections have long been known to occur in low-mass young stars, but this is -to our knowledge-- the first time that such a dramatic one is observed from its very beginning. Under the reasonable assumption that the flux detected at radio wavelengths is optically thin free-free emission, one can estimate the mass of each ejecta to be of the order of 10^-8 Msun. If the ejecta were created as a consequence of an episode of enhanced mass loss accompanied by an increase in accretion onto the protostar, then the total luminosity of IRAS 16293-2422 ought to have increased by 10-60% over the course of at least several months. Between A2alpha and A2beta, component A2 has reappeared, and the relative position angle between A2 and A1 is found to have increased significantly since 2003-2005. This strongly suggests that A1 is a protostar rather than a shock feature, and that the A1/A2 pair is a tight binary system. Including component B, IRAS 16293-2422 therefore appears to be a very young hierarchical multiple system.Comment: Accepted for publication in The Astrophysical Journa

    Orbits and Masses in the T Tauri System

    Full text link
    We investigate the binary star T Tauri South, presenting the orbital parameters of the two components and their individual masses. We combined astrometric positions from the literature with previously unpublished VLT observations. Model fits yield the orbital elements of T Tau Sa and Sb. We use T Tau N as an astrometric reference to derive an estimate for the mass ratio of Sa and Sb. Although most of the orbital parameters are not well constrained, it is unlikely that T Tau Sb is on a highly elliptical orbit or escaping from the system. The total mass of T Tau S is rather well constrained to 3.0 +0.15/-0.24 M_sun. The mass ratio Sb:Sa is about 0.4, corresponding to individual masses of M_Sa = 2.1+/-0.2 M_sun and M_Sb = 0.8+/-0.1 M_sun. This confirms that the infrared companion in the T Tauri system is a pair of young stars obscured by circumstellar material.Comment: 10 pages, 11 figures, accepted by Astronomy and Astrophysic

    Hydrodynamic simulations of the triaxial bulge of M31

    Get PDF
    The interstellar gas flow in the inner disk of M31 is modelled using a new, two dimensional, grid based, hydrodynamics code. The potential of the stellar bulge is derived from its surface brightness profile. The bulge is assumed to be triaxial and rotating in the same plane as the disk in order to explain the twisted nature of M31's central isophotes and the non circular gas velocities in the inner disk. Results are compared with CO observations and the bulge is found to be a fast rotator with a B-band mass-to-light ratio, Y = 6.5 +/- 0.8, and a ratio of co-rotation radius to bulge semi-major axis, R = 1.2 +/- 0.1, implying that any dark halo must have a low density core in contradiction to the predictions of CDM. These conclusions would be strengthened by further observations confirming the model's off axis CO velocity predictions.Comment: 11 pages, 9 figures, Accepted for A+
    • 

    corecore