4,094 research outputs found
HI Observations Towards the Sagittarius Dwarf Spheroidal Galaxy
We have measured the 21-cm line of Galactic HI over more than 50 square
degrees in the direction of the Sagittarius dwarf spheroidal galaxy. The data
show no evidence of HI associated with the dwarf spheroidal which might be
consider analogous to the Magellanic Stream as it is associated in both
position and velocity with the Large Magellanic Cloud. Nor do the HI data show
evidence for any disturbance in the Milky Way disk gas that can be
unambiguously assigned to interaction with the dwarf galaxy. The data shown
here limit the HI mass at the velocity of the Sagittarius dwarf to <7000 solar
masses over some 18 square degrees between Galactic latitudes -13 degrees and
-18 degrees.Comment: 5 pages, 4 figures; accepted for publication in Astronomy &
Astrophysic
Charm Meson Mixing: An Experimental Review
We review current experimental results on charm mixing and CP violation. We
survey experimental techniques, including time-dependent, time-independent, and
quantum-correlated measurements. We review techniques that use a slow pion tag
from D*+ --> pi+ D0 + c.c. decays and those that do not, and cover two-body and
multi-body D0 decay modes. We provide a summary of D-mixing results to date and
comment on future experimental prospects at the LHC and other new or planned
facilities.Comment: 53 pages, 29 figures, 8 table
Global properties of the HI distribution in the outer Milky Way
Aims: We derive the 3-D HI volume density distribution for the Galactic disk
out to R = 60 kpc. Methods: Our analysis is based on parameters for the warp
and rotation curve derived previously. The data are taken from the
Leiden/Argentine/Bonn all sky 21-cm line survey. Results: The Milky Way HI disk
is significantly warped but shows a coherent structure out to R = 35 kpc. The
radial surface density distribution, the densities in the middle of the warped
plane, and the HI scale heights all follow exponential relations. The radial
scale length for the surface density distribution of the HI disk is 3.75 kpc.
Gas at the outskirts for 40 < R < 60 kpc is described best by a distribution
with an exponential radial scale length of 7.5 kpc and a velocity dispersion of
74 km/s. Such a highly turbulent medium fits also well with the average shape
of the high velocity profile wings observed at high latitudes. The turbulent
pressure gradient of such extra-planar gas is on average in balance with the
gravitational forces. About 10% of the Milky Way HI gas is in this state. The
large scale HI distribution is lopsided; for R < 15 kpc there is more gas in
the south. The HI flaring indicates that this asymmetry is caused by a dark
matter wake, located at R = 25 kpc in direction of the Magellanic System.
Conclusions: The HI disk is made up of two major components. Most prominent is
the normal HI disk which can be traced to R = 35 kpc. This is surrounded by a
patchy distribution of highly turbulent gas reaching large scale heights but
also large radial distances. At the position of the Sun the exponential scale
height in the z direction is 3.9 kpc. This component resembles the anomalous
gas discovered previously in some galaxies.Comment: to be published in A&
Fluctuations and massive separation in three-dimensional shock-wave/boundary-layer interactions
Shock-wave unsteadiness was observed in rapidly compressed supersonic turbulent boundary layer flows with significant separation. A Mach 2.85 shock-wave/turbulent boundary layer flow was set up over a series of cylinder-flare bodies in the High Reynolds Number Channel 1. The transition from fully attached to fully separated flow was studied using axisymmetric flares with increasing compression angles. In the second phase, the 30 deg flare was inclined relative to the cylinder axis, so that the effect on a separated flow of increasing 3 dimensionality could be observed. Two 3-D separated cases are examined. A simple conditional sampling technique is applied to the data to group them according to an associated shock position. Mean velocities and turbulent kinetic energies, computed from the conditionally samples data, are compared to those from the unsorted data and to computed values. Three basic questions were addressed: can conditional sampling be used to provide snapshots of the flow; are averaged turbulence quantities dominated by the bimodal nature of the interaction; and is the shock unsteadiness really important to computational accuracy
Evidence for the Galactic X-ray Bulge II
A mosaic of 5 \ros~PSPC pointed observations in the Galactic plane
() reveals X-ray shadows in the keV band cast by
distant molecular clouds. The observed on-cloud and off-cloud X-ray fluxes
indicate that % and % of the diffuse X-ray background in this
direction in the \tq~keV and 1.5 keV bands, respectively, originates behind the
molecular gas which is located at 3 kpc from the Sun. The implication of
the derived background X-ray flux beyond the absorbing molecular cloud is
consistent with, and lends further support to recent observations of a Galactic
X-ray bulge.Comment: 19 pages, 5 figures, 2 table
G28.17+0.05: An unusual giant HI cloud in the inner Galaxy
New 21 cm HI observations have revealed a giant HI cloud in the Galactic
plane that has unusual properties. It is quite well defined, about 150 pc in
diameter at a distance of 5 kpc, and contains as much as 100,000 Solar Masses
of atomic hydrogen. The outer parts of the cloud appear in HI emission above
the HI background, while the central regions show HI self-absorption. Models
which reproduce the observations have a core with a temperature <40 K and an
outer envelope as much as an order of magnitude hotter. The cold core is
elongated along the Galactic plane, whereas the overall outline of the cloud is
approximately spherical. The warm and cold parts of the HI cloud have a
similar, and relatively large, line width of approximately 7 km/s. The cloud
core is a source of weak, anomalously-excited 1720 MHz OH emission, also with a
relatively large line width, which delineates the region of HI self-absorption
but is slightly blue-shifted in velocity. The intensity of the 1720 MHz OH
emission is correlated with N(H) derived from models of the cold core. There is
12CO emission associated with the cloud core. Most of the cloud mass is in
molecules, and the total mass is > 200,000 Solar Masses. In the cold core the
HI mass fraction may be 10 percent. The cloud has only a few sites of current
star formation. There may be about 100 more objects like this in the inner
Galaxy; every line of sight through the Galactic plane within 50 degrees of the
Galactic center probably intersects at least one. We suggest that G28.17+0.05
is a cloud being observed as it enters a spiral arm and that it is in the
transition from the atomic to the molecular state.Comment: 35 pages, inludes 12 figure
Parameters of scalar resonances from the combined analysis of data on processes and decays
A combined analysis of data on isoscalar S-wave processes
and on decays
from the DM2, Mark III and BESIII
collaborations is performed to study mesons. The method of analysis is
based on analyticity and unitarity and uses an uniformization procedure. In the
analysis limited only to the multi-channel -scattering data, two
possible sets of parameters of the were found: in both cases the
mass was about 700 MeV but the total width was either about 600 or 930 MeV. The
extension of the analysis using only the DM2 and Mark III data on the
decays does not allow to choose between these sets. However, the data from
BESIII on the di-pion mass distribution in the decay
clearly prefers the wider state. Spectroscopic implications from
results of the analysis are also discussed.Comment: the formalism is also described (text overlap) in arXiv:1108.3725;
new extended analysis of data; revised PRD versio
Chandra detection of diffuse X-ray emission from the globular cluster Terzan 5
Terzan 5, a globular cluster (GC) prominent in mass and population of compact
objects, is searched for diffuse X-ray emission, as proposed by several models.
We analyzed the data of an archival Chandra observation of Terzan 5 to search
for extended diffuse X-ray emission outside the half-mass radius of the GC. We
removed detected point sources from the data to extract spectra from diffuse
regions around Terzan 5. The Galactic background emission was modeled by a
2-temperature thermal component, which is typical for Galactic diffuse
emission.
We detected significant diffuse excess emission above the particle background
level from the whole field-of-view. The surface brightness appears to be peaked
at the GC center and decreases smoothly outwards. After the subtraction of
particle and Galactic background, the excess spectrum of the diffuse emission
between the half-mass radius and 3' can be described by a power-law model with
photon index = 0.90.5 and a surface flux of F =
(1.170.16) 10 erg s cm sr in the 1--7 keV
band. We estimated the contribution from unresolved point sources to the
observed excess to be negligible. The observations suggest that a purely
thermal origin of the emission is less likely than a non-thermal scenario.
However, from simple modeling we cannot identify a clearly preferred scenario.Comment: 6 pages, 4 figures, accepted for publication by A&
The VLA Galactic Plane Survey
The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum
emission in the Galactic plane between longitude 18 degrees 67 degr. with
latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was
observed with the Very Large Array (VLA) in 990 pointings. Short-spacing
information for the HI line emission was obtained by additional observations
with the Green Bank Telescope (GBT). HI spectral line images are presented with
a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per
0.824 km/s channel. Continuum images made from channels without HI line
emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images
from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane
Survey (SGPS). In general, the agreement between these surveys is impressive,
considering the differences in instrumentation and image processing techniques
used for each survey. The differences between VGPS and CGPS images are small, <
6 K (rms) in channels where the mean HI brightness temperature in the field
exceeds 80 K. A similar degree of consistency is found between the VGPS and
SGPS. The agreement we find between arcminute resolution surveys of the
Galactic plane is a crucial step towards combining these surveys into a single
uniform dataset which covers 90% of the Galactic disk: the International
Galactic Plane Survey (IGPS). The VGPS data will be made available on the World
Wide Web through the Canadian Astronomy Data Centre (CADC).Comment: Accepted for publication in The Astronomical Journal. 41 pages, 13
figures. For information on data release, colour images etc. see
http://www.ras.ucalgary.ca/VGP
- …