16 research outputs found
Integrated storage space allocation and ship scheduling problem in bulk cargo terminals
This study is motivated by the practices of large iron and steel companies that have steady and heavy demands for bulk raw materials, such as iron ore, coal, limestone, etc. These materials are usually transported to a bulk cargo terminal by ships (or to a station by trains). Once unloaded, they are moved to and stored in a bulk material stockyard, waiting for retrieval for use in production. Efficient storage space allocation and ship scheduling are critical to achieving high space utilization, low material loss, and low transportation costs. In this article, we study the integrated storage space allocation and ship scheduling problem in the bulk cargo terminal. Our problem is different from other associated problems due to the special way that the materials are transported and stored. A novel mixed-integer programming model is developed and then solved using a Benders decomposition algorithm, which is enhanced by the use of various valid inequalities, combinatorial Benders cuts, variable reduction tests, and an iterative heuristic procedure. Computational results indicate that the proposed solution method is much more efficient than the standard solution software CPLEX
Differential evolution with an individual-dependent mechanism
Differential evolution (DE) is a well-known optimization algorithm that utilizes the difference of positions between individuals to perturb base vectors and thus generate new mutant individuals. However, the difference between the fitness values of individuals, which may be helpful to improve the performance of the algorithm, has not been used to tune parameters and choose mutation strategies. In this paper, we propose a novel variant of DE with an individual-dependent mechanism that includes an individual-dependent parameter (IDP) setting and an individual-dependent mutation (IDM) strategy. In the IDP setting, control parameters are set for individuals according to the differences in their fitness values. In the IDM strategy, four mutation operators with different searching characteristics are assigned to the superior and inferior individuals, respectively, at different stages of the evolution process. The performance of the proposed algorithm is then extensively evaluated on a suite of the 28 latest benchmark functions developed for the 2013 Congress on Evolutionary Computation special session. Experimental results demonstrate the algorithm's outstanding performance
Least squares support vector machine with self-organizing multiple kernel learning and sparsity
© 2018 In recent years, least squares support vector machines (LSSVMs) with various kernel functions have been widely used in the field of machine learning. However, the selection of kernel functions is often ignored in practice. In this paper, an improved LSSVM method based on self-organizing multiple kernel learning is proposed for black-box problems. To strengthen the generalization ability of the LSSVM, some appropriate kernel functions are selected and the corresponding model parameters are optimized using a differential evolution algorithm based on an improved mutation strategy. Due to the large computation cost, a sparse selection strategy is developed to extract useful data and remove redundant data without loss of accuracy. To demonstrate the effectiveness of the proposed method, some benchmark problems from the UCI machine learning repository are tested. The results show that the proposed method performs better than other state-of-the-art methods. In addition, to verify the practicability of the proposed method, it is applied to a real-world converter steelmaking process. The results illustrate that the proposed model can precisely predict the molten steel quality and satisfy the actual production demand
Global method for a class of operation optimization problem in steel rolling systems
Many steel products are produced in hot or cold rolling lines with multiple stands. The steel material becomes thinner after being rolled at each stand. Steady-state parameters for controlling the rolling line need to be set so as to satisfy the final product specifications and minimize the total energy consumption. This paper develops a generalized geometric programming model for this setting problem and proposes a global method for solving it. The model can be expressed with a linear objective function and a set of constraints including nonconvex ones. Through constructing lower bounds of some components, the constraints can be converted to convex ones approximately. A sequential approximation method is proposed in a gradually reduced interval to improve accuracy and efficiency. However, the resulting convex programming model in each iteration is still complicated. To reduce the power, it is transformed into a second-order cone programming (SOCP) model and solved using alternating direction method of multipliers (ADMM). The effectiveness of the global method is tested using real data from a hot-rolling line with seven stands. The results demonstrate that the proposed global method solves the problem effectively and reduces the energy consumption
Research into container reshuffling and stacking problems in container terminal yards
Container stacking and reshuffling are important issues in the management of operations in a container terminal. Minimizing the number of reshuffles can increase productivity of the yard cranes and the efficiency of the terminal. In this research, the authors improve the existing static reshuffling model, develop five effective heuristics, and analyze the performance of these algorithms. A discrete-event simulation model is developed to animate the stacking, retrieving, and reshuffling operations and to test the performance of the proposed heuristics and their extended versions in a dynamic environment with arrivals and retrievals of containers. The experimental results for the static problem show that the improved model can solve the reshuffling problem more quickly than the existing model and the proposed extended heuristics are superior to the existing ones. The experimental results for the dynamic problem show that the results of the extended versions of the five proposed heuristics are superior or similar to the best results of the existing heuristics and consume very little time
Coil batching to improve productivity and energy utilization in steel production
This paper investigates a practical batching decision problem that arises in the batch annealing operations in the cold rolling stage of steel production faced by most large iron and steel companies in the world. The problem is to select steel coils from a set of waiting coils to form batches to be annealed in available batch annealing furnaces and choose a median coil for each furnace. The objective is to maximize the total reward of the selected coils less the total coil'coil and coil'furnace mismatching cost. For a special case of the problem that arises frequently in practical settings where the coils are all similar and there is only one type of furnace available, we develop a polynomial-time dynamic programming algorithm to obtain an optimal solution. For the general case of the problem, which is strongly NP-hard, an exact branch-and-price-and-cut solution algorithm is developed using a column and row generation framework. A variable reduction strategy is also proposed to accelerate the algorithm. The algorithm is capable of solving medium-size instances to optimality within a reasonable computation time. In addition, a tabu search heuristic is proposed for solving larger instances. Three simple search neighborhoods, as well as a sophisticated variable-depth neighborhood, are developed. This heuristic can generate near-optimal solutions for large instances within a short computation time. Using both randomly generated and real-world production data sets, we show that our algorithms are superior to the typical rule-based planning approach used by many steel plants. A decision support system that embeds our algorithms was developed and implemented at Baosteel to replace their rule-based planning method. The use of the system brings significant benefits to Baosteel, including an annual net profit increase of at least 1.76 million U.S. dollars and a large reduction of standard coal consumption and carbon dioxide emissions
Model and heuristic solutions for the multiple double-load crane scheduling problem in slab yards
This article studies a multiple double-load crane scheduling problem in steel slab yards. Consideration of multiple cranes and their double-load capability makes the scheduling problem more complex. This problem has not been studied previously. We first formulate the problem as a mixed-integer linear programming (MILP) model. A two-phase model-based heuristic is then proposed. To solve large problems, a pointer-based discrete differential evolution (PDDE) algorithm was developed with a dynamic programming (DP) algorithm embedded to solve the one-crane subproblem for a fixed sequence of tasks. Instances of real problems are collected from a steel company to test the performance of the solution methods. The experiment results show that the model can solve small problems optimally, and the solution greatly improves the schedule currently used in practice. The two-phase heuristic generates near-optimal solutions, but it can still only solve comparatively modest problems within reasonable (4 h) computational timeframes. The PDDE algorithm can solve large practical problems relatively quickly and provides better results than the two-phase heuristic solution, demonstrating its effectiveness and efficiency and therefore its suitability for practical use
Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine
We consider a scheduling problem in which the jobs are generated by two agents and have time-dependent proportional-linear deteriorating processing times. The two agents compete for a common single batching machine to process their jobs, and each agent has its own criterion to optimize. The jobs may have identical or different release dates. The batching machine can process several jobs simultaneously as a batch and the processing time of a batch is equal to the longest of the job processing times in the batch. The problem is to determine a schedule for processing the jobs such that the objective of one agent is minimized, while the objective of the other agent is maintained under a fixed value. For the unbounded model, we consider various combinations of regular objectives on the basis of the compatibility of the two agents. For the bounded model, we consider two different objectives for incompatible and compatible agents: minimizing the makespan of one agent subject to an upper bound on the makespan of the other agent and minimizing the number of tardy jobs of one agent subject to an upper bound on the number of tardy jobs of the other agent. We analyze the computational complexity of various problems by either demonstrating that the problem is intractable or providing an efficient exact algorithm for the problem. Moreover, for certain problems that are shown to be intractable, we provide efficient algorithms for certain special cases
Modeling and solution for the ship stowage planning problem of coils in the steel industry
We consider a ship stowage planning problem where steel coils with known destination ports are to be loaded onto a ship. The coils are to be stowed on the ship in rows. Due to their heavy weight and cylindrical shape, coils can be stowed in at most two levels. Different from stowage problems in previous studies, in this problem there are no fixed positions on the ship for the coils due to their different sizes. At a destination port, if a coil to be unloaded is not at a top position, those blocking it need to be shuffled. In addition, the stability of ship has to be maintained after unloading at each destination port. The objective for the stowage planning problem is to minimize a combination of ship instability throughout the entire voyage, the shuffles needed for unloading at the destination ports, and the dispersion of coils to be unloaded at the same destination port. We formulate the problem as a novel mixed integer linear programming model. Several valid inequalities are derived to help reducing solution time. A tabu
search (TS) algorithm is developed for the problem with the initial solution generated using a construction heuristic. To evaluate the proposed TS algorithm, numerical experiments are carried out on problem instances of three different scales by comparing it with a model-based decomposition heuristic, the classic TS algorithm, the particle swarm optimization algorithm, and the manual method used in practice. The results show that for small problems, the proposed algorithm can generate optimal solutions. For medium and
large practical problems, the proposed algorithm outperforms other methods
A memetic algorithm based on probability learning for solving the multidimensional knapsack problem
The multidimensional knapsack problem (MKP) is a well-known combinatorial optimization problem with many real-life applications. In this article, a memetic algorithm based on probability learning (MA/PL) is proposed to solve MKP. The main highlights of this article are two-fold: 1) problem-dependent heuristics for MKP and 2) a novel framework of MA/PL. For the problem-dependent heuristics, we first propose two kinds of logarithmic utility functions (LUFs) based on the special structure of MKP, in which the profit value and weight vector of each item are considered simultaneously. Then, LUFs are applied to effectively guide the repair operator for infeasible solutions and the local search operator. For the framework of MA/PL, we propose two problem-dependent probability distributions to extract the special knowledge of MKP, that is, the marginal probability distribution (MPD) of each item and the joint probability distribution (JPD) of two conjoint items. Next, learning rules for MPD and JPD, which borrow ideas from competitive learning and binary Markov chain, are proposed. Thereafter, we generate MA/PL's offspring by integrating MPD and JPD, such that the univariate probability information of each item as well as the dependency of conjoint items can be sufficiently used. Results of experiments on 179 benchmark instances and a real-life case study demonstrate the effectiveness and practical values of the proposed MKP