464 research outputs found

    Multilevel Context Representation for Improving Object Recognition

    Full text link
    In this work, we propose the combined usage of low- and high-level blocks of convolutional neural networks (CNNs) for improving object recognition. While recent research focused on either propagating the context from all layers, e.g. ResNet, (including the very low-level layers) or having multiple loss layers (e.g. GoogLeNet), the importance of the features close to the higher layers is ignored. This paper postulates that the use of context closer to the high-level layers provides the scale and translation invariance and works better than using the top layer only. In particular, we extend AlexNet and GoogLeNet by additional connections in the top nn layers. In order to demonstrate the effectiveness of the proposed approach, we evaluated it on the standard ImageNet task. The relative reduction of the classification error is around 1-2% without affecting the computational cost. Furthermore, we show that this approach is orthogonal to typical test data augmentation techniques, as recently introduced by Szegedy et al. (leading to a runtime reduction of 144 during test time)

    Real-Time Document Image Classification using Deep CNN and Extreme Learning Machines

    Full text link
    This paper presents an approach for real-time training and testing for document image classification. In production environments, it is crucial to perform accurate and (time-)efficient training. Existing deep learning approaches for classifying documents do not meet these requirements, as they require much time for training and fine-tuning the deep architectures. Motivated from Computer Vision, we propose a two-stage approach. The first stage trains a deep network that works as feature extractor and in the second stage, Extreme Learning Machines (ELMs) are used for classification. The proposed approach outperforms all previously reported structural and deep learning based methods with a final accuracy of 83.24% on Tobacco-3482 dataset, leading to a relative error reduction of 25% when compared to a previous Convolutional Neural Network (CNN) based approach (DeepDocClassifier). More importantly, the training time of the ELM is only 1.176 seconds and the overall prediction time for 2,482 images is 3.066 seconds. As such, this novel approach makes deep learning-based document classification suitable for large-scale real-time applications

    Sparse Radial Sampling LBP for Writer Identification

    Full text link
    In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.Comment: Submitted to the 13th International Conference on Document Analysis and Recognition (ICDAR 2015

    Identifying Cross-Depicted Historical Motifs

    Full text link
    Cross-depiction is the problem of identifying the same object even when it is depicted in a variety of manners. This is a common problem in handwritten historical documents image analysis, for instance when the same letter or motif is depicted in several different ways. It is a simple task for humans yet conventional heuristic computer vision methods struggle to cope with it. In this paper we address this problem using state-of-the-art deep learning techniques on a dataset of historical watermarks containing images created with different methods of reproduction, such as hand tracing, rubbing, and radiography. To study the robustness of deep learning based approaches to the cross-depiction problem, we measure their performance on two different tasks: classification and similarity rankings. For the former we achieve a classification accuracy of 96% using deep convolutional neural networks. For the latter we have a false positive rate at 95% true positive rate of 0.11. These results outperform state-of-the-art methods by a significant margin.Comment: 6 pages, 6 figure

    Open Evaluation Tool for Layout Analysis of Document Images

    Full text link
    This paper presents an open tool for standardizing the evaluation process of the layout analysis task of document images at pixel level. We introduce a new evaluation tool that is both available as a standalone Java application and as a RESTful web service. This evaluation tool is free and open-source in order to be a common tool that anyone can use and contribute to. It aims at providing as many metrics as possible to investigate layout analysis predictions, and also provide an easy way of visualizing the results. This tool evaluates document segmentation at pixel level, and support multi-labeled pixel ground truth. Finally, this tool has been successfully used for the ICDAR2017 competition on Layout Analysis for Challenging Medieval Manuscripts.Comment: The 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), HIP: 4th International Workshop on Historical Document Imaging and Processing, Kyoto, Japan, 201
    corecore