71 research outputs found

    Neutralino Dark Matter in Gauge Mediation After Run I of LHC and LUX

    Get PDF
    Neutralino can be the dark matter candidate in the gauge-mediated supersymmetry breaking models if the conformal sequestered mechanism is assumed in the hidden sector. In this paper, we study this mechanism by using the current experimental results after the run I of LHC and LUX. By adding new Yukawa couplings between the messenger fields and Higgs fields, we find that this mechanism can predict a neutralino dark matter with correct relic density and a Higgs boson with mass around 125 GeV. All our survived points have some common features. Firstly, the Higgs sector falls into the decoupling limit. So the properties of the light Higgs boson are similar to the predictions of the Standard Model one. Secondly, the correct EWSB hints a relatively small μ\mu-term, which makes the lightest neutralino lighter than the lightest stau. So a bino-higgsino dark matter with correct relic density can be achieved. And the relatively small μ\mu-term results in a small fine-tuning. Finally, this bino-higgsino dark matter can pass all current bounds, including both spin-independent and spin-dependent direct searches. The spin-independent cross section of our points can be examined by further experiments.Comment: Minor changes, version to appear in Phys. Lett.

    Towards the Natural Gauge Mediation

    Full text link
    The sweet spot supersymmetry (SUSY) solves the mu problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the mu-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the \mu/B_{\mu}-problem. Moreover, there are only five free parameters in our model. So we can determine the characteristic low energy spectra and explore its distinct phenomenology. The low-scale fine-tuning measure can be as low as 20 with the light stop mass below 1 TeV and gluino mass below 2 TeV. The gravitino dark matter can come from a thermal production with the correct relic density and be consistent with the thermal leptogenesis. Because gluino and stop can be relatively light in our model, how to search for such GMSB at the upcoming run II of the LHC experiment could be very interesting.Comment: 22 pages, 7 figures, Late

    Revisit to Non-decoupling MSSM

    Get PDF
    Dipole operator sˉσμνFμνb\bar{s}\sigma_{\mu\nu}F^{\mu\nu}b requires the helicity flip in the involving quark states thus the breaking of chiral U(3)Q×U(3)dU(3)_{Q}\times U(3)_{d}. On the other hand, the bb-quark mass generation is also a consequence of chiral U(3)Q×U(3)dU(3)_{Q}\times U(3)_{d} symmetry breaking. Therefore, in many models, there might be strong correlation between the bsγb\to s\gamma and bb quark Yukawa coupling. We use non-decoupling MSSM model to illustrate this feature. The light Higgs boson may evade the direct search experiments at LEPII or Tevatron while the 125 GeV Higgs-like boson is identified as the heavy Higgs boson in the spectrum. A light charged Higgs is close to the heavy Higgs boson which is of 125 GeV and its contribution to bsγb\to s \gamma requires large supersymmetric correction with large PQ and RR symmetry breaking. The large supersymmetric contribution at the same time significantly modifies the bb quark Yukawa co upling. With combined flavor constraints BXsγB\to X_{s}\gamma and Bsμ+μB_{s}\to \mu^{+}\mu^{-} and direct constraints on Higgs properties, we find best fit scenarios with light stop of O\cal O(500 GeV), negative AtA_{t} around -750 GeV and large μ\mu-term of 2-3 TeV. In addition, reduction in bbˉb\bar{b} partial width may also result in large enhancement of ττ\tau\tau decay branching fraction. Large parameter region in the survival space under all bounds may be further constrained by HττH\to \tau\tau if no excess of ττ\tau\tau is confirmed at LHC. We only identify a small parameter region with significant HhhH\to hh decay that is consistent with all bounds and reduced ττ\tau\tau decay branching fraction.Comment: 18pages, 6 figure

    Gamma-rays from Nearby Clusters: Constraints on Selected Decaying Dark Matter Models

    Full text link
    Recently, the Fermi-LAT collaboration reported upper limits on the GeV gamma-ray flux from nearby clusters of galaxies. Motivated by these limits, we study corresponding constraints on gamma-ray emissions from two specific decaying dark matter models, one via grand unification scale suppressed operators and the other via R-parity violating operators. Both can account for the PAMELA and Fermi-LAT excesses of e^\pm. For GUT decaying dark matter, the gamma-rays from the M49 and Fornax clusters, with energy in the range of 1 to 10 GeV, lead to the most stringent constraints to date. As a result, this dark matter is disfavored with conventional model of e^\pm background. In addition, it is likely that some tension exists between the Fermi-LAT e^\pm excess and the gamma ray constraints for any decaying dark matter model, provided conventional model of e^\pm background is adopted. Nevertheless, the GUT decaying dark matter can still solely account for the PAMELA positron fraction excess without violating the gamma-ray constraints. For the gravitino dark matter model with R-parity violation, cluster observations do not give tight constraints. This is because a different e^\pm background has been adopted which leads to relatively light dark matter mass around 200 GeV.Comment: 17 pages, 4 figures, version to appear in Phys. Lett.
    corecore