4,998 research outputs found
A differential cluster variation method for analysis of spiniodal decomposition in alloys
A differential cluster variation method (DCVM) is proposed for analysis of
spinoidal decomposition in alloys. In this method, lattice symmetry operations
in the presence of an infinitesimal composition gradient are utilized to deduce
the connection equations for the correlation functions and to reduce the number
of independent variables in the cluster variation analysis.
Application of the method is made to calculate the gradient energy
coefficient in the Cahn-Hilliard free energy function and the fastest growing
wavelength for spinodal decomposition in Al-Li alloys. It is shown that the
gradient coefficient of congruently ordered Al-Li alloys is much larger than
that of the disordered system. In such an alloy system, the calculated fastest
growing wavelength is approximately 10 nm, which is an order of magnitude
larger than the experimentally observed domain size. This may provide a
theoretical explanation why spinodal decomposition after a congruent ordering
is dominated by the antiphase boundaries.Comment: 15 pages, 7 figure
Eight-potential-well order-disorder ferroelectric model and effects of random fields
An eight-potential-well order-disorder ferroelectric model was presented and
the phase transition was studied under the mean-field approximation. It was
shown that the two-body interactions are able to account for the first-order
and the second order phase transitions. With increasing the random fields in
the system, a first-order phase transition is transformed into a second-order
phase transition, and furthermore, a second-order phase transition is
inhibited.
However, proper random fields can promote the spontaneous appearance of a
first-order phase transition by increasing the overcooled temperature. The
connections of the model with relaxors were discussed.Comment: 8 pages, 5 figures. Submitted to Applied Physics Letter
Adiponectin protects against paraquat-induced lung injury by attenuating oxidative/nitrative stress.
The specific mechanisms underlying paraquat (PQ)-induced lung injury remain unknown, which limits understanding of its cytotoxic potential. Although oxidative stress has been established as an important mechanism underlying PQ toxicity, multiple antioxidants have proven ineffective in attenuating the deleterious effects of PQ. Adiponectin, which shows anti-oxidative and antinitrative effects, may have the potential to reduce PQ-mediated injury. The present study determined the protective action of globular domain adiponectin (gAd) on PQ-induced lung injury, and attempted to elucidate the underlying mechanism or mechanisms of action. BALB/c mice were administered PQ, with and without 12 or 36 h of gAd pre-treatment. The pulmonary oxidative/nitrative status was assessed by measuring pulmonary O2(•-), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and 8-hydroxy-2-dydeoxy guanosine (8-OHdG) production, and blood 3-Nitrotyrosine (3-NT). At a dose of 20 mg/kg, PQ markedly increased O2(•-), SOD, MDA, NO and 8-OHdG production 3 h post-administration, but did not significantly increase 3-NT levels until 12 h. gAd inhibited these changes in a dose-dependent manner, via transient activation of MDA, followed by attenuation of MDA formation from 6 h onwards. Histological analysis demonstrated that gAd decreased interstitial edema and inflammatory cell infiltration. These results suggest that gAd protects against PQ-induced lung injury by mitigating oxidative/nitrative stress. Furthermore, gAd may be a potential therapeutic agent for PQ-induced lung injury, and further pharmacological studies are therefore warranted
Modification of Transition-Metal Redox by Interstitial Water in Hexacyanometalate Electrodes for Sodium-Ion Batteries.
A sodium-ion battery (SIB) solution is attractive for grid-scale electrical energy storage. Low-cost hexacyanometalate is a promising electrode material for SIBs because of its easy synthesis and open framework. Most hexacyanometalate-based SIBs work with aqueous electrolyte, and interstitial water in the material has been found to strongly affect the electrochemical profile, but the mechanism remains elusive. Here we provide a comparative study of the transition-metal redox in hexacyanometalate electrodes with and without interstitial water based on soft X-ray absorption spectroscopy and theoretical calculations. We found distinct transition-metal redox sequences in hydrated and anhydrated NaxMnFe(CN)6·zH2O. The Fe and Mn redox in hydrated electrodes are separated and are at different potentials, leading to two voltage plateaus. On the contrary, mixed Fe and Mn redox in the same potential range is found in the anhydrated system. This work reveals for the first time how transition-metal redox in batteries is strongly affected by interstitial molecules that are seemingly spectators. The results suggest a fundamental mechanism based on three competing factors that determine the transition-metal redox potentials. Because most hexacyanometalate electrodes contain water, this work directly reveals the mechanism of how interstitial molecules could define the electrochemical profile, especially for electrodes based on transition-metal redox with well-defined spin states
Recommended from our members
Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes.
The oxygen redox (OR) activity is conventionally considered detrimental to the stability and kinetics of batteries. However, OR reactions are often confused by irreversible oxygen oxidation. Here, based on high-efficiency mapping of resonant inelastic x-ray scattering of both the transition metal and oxygen, we distinguish the lattice OR in Na0.6[Li0.2Mn0.8]O2 and compare it with Na2/3[Mg1/3Mn2/3]O2. Both systems display strong lattice OR activities but with distinct electrochemical stability. The comparison shows that the substantial capacity drop in Na0.6[Li0.2Mn0.8]O2 stems from non-lattice oxygen oxidations, and its voltage decay from an increasing Mn redox contribution upon cycling, contrasting those in Na2/3[Mg1/3Mn2/3]O2. We conclude that lattice OR is not the ringleader of the stability issue. Instead, irreversible oxygen oxidation and the changing cationic reactions lead to the capacity and voltage fade. We argue that lattice OR and other oxygen activities should/could be studied and treated separately to achieve viable OR-based electrodes
- …