3,111 research outputs found

    Quantifying jet transport properties via large pTp_T hadron production

    Full text link
    Nuclear modification factor RAAR_{AA} for large pTp_T single hadron is studied in a next-to-leading order (NLO) perturbative QCD (pQCD) parton model with medium-modified fragmentation functions (mFFs) due to jet quenching in high-energy heavy-ion collisions. The energy loss of the hard partons in the QGP is incorporated in the mFFs which utilize two most important parameters to characterize the transport properties of the hard parton jets: the jet transport parameter q^0\hat q_{0} and the mean free path λ0\lambda_{0}, both at the initial time τ0\tau_0. A phenomenological study of the experimental data for RAA(pT)R_{AA}(p_{T}) is performed to constrain the two parameters with simultaneous χ2/d.o.f\chi^2/{\rm d.o.f} fits to RHIC as well as LHC data. We obtain for energetic quarks q^01.1±0.2\hat q_{0}\approx 1.1 \pm 0.2 GeV2^2/fm and λ00.4±0.03\lambda_{0}\approx 0.4 \pm 0.03 fm in central Au+AuAu+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV, while q^01.7±0.3\hat q_{0}\approx 1.7 \pm 0.3 GeV2^2/fm, and λ00.5±0.05\lambda_{0}\approx 0.5 \pm 0.05 fm in central Pb+PbPb+Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV. Numerical analysis shows that the best fit favors a multiple scattering picture for the energetic jets propagating through the bulk medium, with a moderate averaged number of gluon emissions. Based on the best constraints for λ0\lambda_{0} and τ0\tau_0, the estimated value for the mean-squared transverse momentum broadening is moderate which implies that the hard jets go through the medium with small reflection.Comment: 8 pages, 6 figures, revised versio

    Experimental Investigation of Longitudinal Space-Time Correlations of the Velocity Field in Turbulent Rayleigh-B\'{e}nard Convection

    Full text link
    We report an experimental investigation of the longitudinal space-time cross-correlation function of the velocity field, C(r,τ)C(r,\tau), in a cylindrical turbulent Rayleigh-B\'{e}nard convection cell using the particle image velocimetry (PIV) technique. We show that while the Taylor's frozen-flow hypothesis does not hold in turbulent thermal convection, the recent elliptic model advanced for turbulent shear flows [He & Zhang, \emph{Phys. Rev. E} \textbf{73}, 055303(R) (2006)] is valid for the present velocity field for all over the cell, i.e., the isocorrelation contours of the measured C(r,τ)C(r,\tau) have a shape of elliptical curves and hence C(r,τ)C(r,\tau) can be related to C(rE,0)C(r_E,0) via rE2=(rβτ)2+γ2τ2r_E^2=(r-\beta\tau)^2+\gamma^2\tau^2 with β\beta and γ\gamma being two characteristic velocities. We further show that the fitted β\beta is proportional to the mean velocity of the flow, but the values of γ\gamma are larger than the theoretical predictions. Specifically, we focus on two representative regions in the cell: the region near the cell sidewall and the cell's central region. It is found that β\beta and γ\gamma are approximately the same near the sidewall, while β0\beta\simeq0 at cell center.Comment: 16 pages, 15 figures, submitted to J. Fluid Mec

    Log-Poisson Hierarchical Clustering of Cosmic Neutral Hydrogen and Ly-alpha Transmitted Flux of QSO Absorption Spectrum

    Full text link
    we study, in this paper, the non-Gaussian features of the mass density field of neutral hydrogen fluid and the Ly-alpha transmitted flux of QSO absorption spectrum from the point-of-view of self-similar log-Poisson hierarchy. It has been shown recently that, in the scale range from the onset of nonlinear evolution to dissipation, the velocity and mass density fields of cosmic baryon fluid are extremely well described by the She-Leveque's scaling formula, which is due to the log-Poisson hierarchical cascade. Since the mass density ratio between ionized hydrogen to total hydrogen is not uniform in space, the mass density field of neutral hydrogen component is not given by a similar mapping of total baryon fluid. Nevertheless, we show, with hydrodynamic simulation samples of the concordance Λ\LambdaCDM universe, that the mass density field of neutral hydrogen, is also well described by the log-Poisson hierarchy. We then investigate the field of Lyα\alpha transmitted flux of QSO absorption spectrum. Due to redshift distortion, Lyα\alpha transmitted flux fluctuations are no longer to show all features of the log-Poisson hierarchy. However, some non-Gaussian features predicted by the log-Poisson hierarchy are not affected by the redshift distortion. We test these predictions with the high resolution and high S/N data of quasars Lyα\alpha absorption spectra. All results given by real data, including β\beta-hierarchy, high order moments and scale-scale correlation, are found to be well consistent with the log-Poisson hierarchy. We compare the log-Poisson hierarchy with the popular log-normal model of the Lyα\alpha transmitted flux. The later is found to yield too strong non-Gaussianity at high orders, while the log-Poisson hierarchy is in agreement with observed data.Comment: 24 pages, 9 figures, accepted by Ap
    corecore