1,213 research outputs found
Building recognition on subregion’s multi-scale gist feature extraction and corresponding columns information based dimensionality reduction
Peer reviewedPublisher PD
Understanding the Role of Optimization in Double Descent
The phenomenon of model-wise double descent, where the test error peaks and
then reduces as the model size increases, is an interesting topic that has
attracted the attention of researchers due to the striking observed gap between
theory and practice \citep{Belkin2018ReconcilingMM}. Additionally, while double
descent has been observed in various tasks and architectures, the peak of
double descent can sometimes be noticeably absent or diminished, even without
explicit regularization, such as weight decay and early stopping. In this
paper, we investigate this intriguing phenomenon from the optimization
perspective and propose a simple optimization-based explanation for why double
descent sometimes occurs weakly or not at all. To the best of our knowledge, we
are the first to demonstrate that many disparate factors contributing to
model-wise double descent (initialization, normalization, batch size, learning
rate, optimization algorithm) are unified from the viewpoint of optimization:
model-wise double descent is observed if and only if the optimizer can find a
sufficiently low-loss minimum. These factors directly affect the condition
number of the optimization problem or the optimizer and thus affect the final
minimum found by the optimizer, reducing or increasing the height of the double
descent peak. We conduct a series of controlled experiments on random feature
models and two-layer neural networks under various optimization settings,
demonstrating this optimization-based unified view. Our results suggest the
following implication: Double descent is unlikely to be a problem for
real-world machine learning setups. Additionally, our results help explain the
gap between weak double descent peaks in practice and strong peaks observable
in carefully designed setups.Comment: NeurIPS Workshop 2023 Optimization for Machine Learnin
Message Passing in C-RAN: Joint User Activity and Signal Detection
In cloud radio access network (C-RAN), remote radio heads (RRHs) and users
are uniformly distributed in a large area such that the channel matrix can be
considered as sparse. Based on this phenomenon, RRHs only need to detect the
relatively strong signals from nearby users and ignore the weak signals from
far users, which is helpful to develop low-complexity detection algorithms
without causing much performance loss. However, before detection, RRHs require
to obtain the realtime user activity information by the dynamic grant
procedure, which causes the enormous latency. To address this issue, in this
paper, we consider a grant-free C-RAN system and propose a low-complexity
Bernoulli-Gaussian message passing (BGMP) algorithm based on the sparsified
channel, which jointly detects the user activity and signal. Since active users
are assumed to transmit Gaussian signals at any time, the user activity can be
regarded as a Bernoulli variable and the signals from all users obey a
Bernoulli-Gaussian distribution. In the BGMP, the detection functions for
signals are designed with respect to the Bernoulli-Gaussian variable. Numerical
results demonstrate the robustness and effectivity of the BGMP. That is, for
different sparsified channels, the BGMP can approach the mean-square error
(MSE) of the genie-aided sparse minimum mean-square error (GA-SMMSE) which
exactly knows the user activity information. Meanwhile, the fast convergence
and strong recovery capability for user activity of the BGMP are also verified.Comment: Conference, 6 pages, 7 figures, accepted by IEEE Globecom 201
Rigidity of 3D spherical caps via -bubbles
By using Gromov's -bubble technique, we show that the -dimensional
spherical caps are rigid under perturbations that do not reduce the metric, the
scalar curvature, and the mean curvature along its boundary. Several
generalizations of this result will be discussed.Comment: 20 pages, 1 figure, All comments are welcom
- …