234 research outputs found
A Computational Model of the Short-Cut Rule for 2D Shape Decomposition
We propose a new 2D shape decomposition method based on the short-cut rule.
The short-cut rule originates from cognition research, and states that the
human visual system prefers to partition an object into parts using the
shortest possible cuts. We propose and implement a computational model for the
short-cut rule and apply it to the problem of shape decomposition. The model we
proposed generates a set of cut hypotheses passing through the points on the
silhouette which represent the negative minima of curvature. We then show that
most part-cut hypotheses can be eliminated by analysis of local properties of
each. Finally, the remaining hypotheses are evaluated in ascending length
order, which guarantees that of any pair of conflicting cuts only the shortest
will be accepted. We demonstrate that, compared with state-of-the-art shape
decomposition methods, the proposed approach achieves decomposition results
which better correspond to human intuition as revealed in psychological
experiments.Comment: 11 page
Cooperative Training of Deep Aggregation Networks for RGB-D Action Recognition
A novel deep neural network training paradigm that exploits the conjoint
information in multiple heterogeneous sources is proposed. Specifically, in a
RGB-D based action recognition task, it cooperatively trains a single
convolutional neural network (named c-ConvNet) on both RGB visual features and
depth features, and deeply aggregates the two kinds of features for action
recognition. Differently from the conventional ConvNet that learns the deep
separable features for homogeneous modality-based classification with only one
softmax loss function, the c-ConvNet enhances the discriminative power of the
deeply learned features and weakens the undesired modality discrepancy by
jointly optimizing a ranking loss and a softmax loss for both homogeneous and
heterogeneous modalities. The ranking loss consists of intra-modality and
cross-modality triplet losses, and it reduces both the intra-modality and
cross-modality feature variations. Furthermore, the correlations between RGB
and depth data are embedded in the c-ConvNet, and can be retrieved by either of
the modalities and contribute to the recognition in the case even only one of
the modalities is available. The proposed method was extensively evaluated on
two large RGB-D action recognition datasets, ChaLearn LAP IsoGD and NTU RGB+D
datasets, and one small dataset, SYSU 3D HOI, and achieved state-of-the-art
results
Late Fusion Multi-view Clustering via Global and Local Alignment Maximization
Multi-view clustering (MVC) optimally integrates complementary information
from different views to improve clustering performance. Although demonstrating
promising performance in various applications, most of existing approaches
directly fuse multiple pre-specified similarities to learn an optimal
similarity matrix for clustering, which could cause over-complicated
optimization and intensive computational cost. In this paper, we propose late
fusion MVC via alignment maximization to address these issues. To do so, we
first reveal the theoretical connection of existing k-means clustering and the
alignment between base partitions and the consensus one. Based on this
observation, we propose a simple but effective multi-view algorithm termed
LF-MVC-GAM. It optimally fuses multiple source information in partition level
from each individual view, and maximally aligns the consensus partition with
these weighted base ones. Such an alignment is beneficial to integrate
partition level information and significantly reduce the computational
complexity by sufficiently simplifying the optimization procedure. We then
design another variant, LF-MVC-LAM to further improve the clustering
performance by preserving the local intrinsic structure among multiple
partition spaces. After that, we develop two three-step iterative algorithms to
solve the resultant optimization problems with theoretically guaranteed
convergence. Further, we provide the generalization error bound analysis of the
proposed algorithms. Extensive experiments on eighteen multi-view benchmark
datasets demonstrate the effectiveness and efficiency of the proposed
LF-MVC-GAM and LF-MVC-LAM, ranging from small to large-scale data items. The
codes of the proposed algorithms are publicly available at
https://github.com/wangsiwei2010/latefusionalignment
Consensus Kernel K
Multiview clustering aims to improve clustering performance through optimal integration of information from multiple views. Though demonstrating promising performance in various applications, existing multiview clustering algorithms cannot effectively handle the view’s incompleteness. Recently, one pioneering work was proposed that handled this issue by integrating multiview clustering and imputation into a unified learning framework. While its framework is elegant, we observe that it overlooks the consistency between views, which leads to a reduction in the clustering performance. In order to address this issue, we propose a new unified learning method for incomplete multiview clustering, which simultaneously imputes the incomplete views and learns a consistent clustering result with explicit modeling of between-view consistency. More specifically, the similarity between each view’s clustering result and the consistent clustering result is measured. The consistency between views is then modeled using the sum of these similarities. Incomplete views are imputed to achieve an optimal clustering result in each view, while maintaining between-view consistency. Extensive comparisons with state-of-the-art methods on both synthetic and real-world incomplete multiview datasets validate the superiority of the proposed method
Outlier Detection Ensemble with Embedded Feature Selection
Feature selection places an important role in improving the performance of
outlier detection, especially for noisy data. Existing methods usually perform
feature selection and outlier scoring separately, which would select feature
subsets that may not optimally serve for outlier detection, leading to
unsatisfying performance. In this paper, we propose an outlier detection
ensemble framework with embedded feature selection (ODEFS), to address this
issue. Specifically, for each random sub-sampling based learning component,
ODEFS unifies feature selection and outlier detection into a pairwise ranking
formulation to learn feature subsets that are tailored for the outlier
detection method. Moreover, we adopt the thresholded self-paced learning to
simultaneously optimize feature selection and example selection, which is
helpful to improve the reliability of the training set. After that, we design
an alternate algorithm with proved convergence to solve the resultant
optimization problem. In addition, we analyze the generalization error bound of
the proposed framework, which provides theoretical guarantee on the method and
insightful practical guidance. Comprehensive experimental results on 12
real-world datasets from diverse domains validate the superiority of the
proposed ODEFS.Comment: 10pages, AAAI202
Single-Cell Deep Clustering Method Assisted by Exogenous Gene Information: A Novel Approach to Identifying Cell Types
In recent years, the field of single-cell data analysis has seen a marked
advancement in the development of clustering methods. Despite advancements,
most of these algorithms still concentrate on analyzing the provided
single-cell matrix data. However, in medical applications, single-cell data
often involves a wealth of exogenous information, including gene networks.
Overlooking this aspect could lead to information loss and clustering results
devoid of significant clinical relevance. An innovative single-cell deep
clustering method, incorporating exogenous gene information, has been proposed
to overcome this limitation. This model leverages exogenous gene network
information to facilitate the clustering process, generating discriminative
representations. Specifically, we have developed an attention-enhanced graph
autoencoder, which is designed to efficiently capture the topological features
between cells. Concurrently, we conducted a random walk on an exogenous
Protein-Protein Interaction (PPI) network, thereby acquiring the gene's
topological features. Ultimately, during the clustering process, we integrated
both sets of information and reconstructed the features of both cells and genes
to generate a discriminative representation. Extensive experiments have
validated the effectiveness of our proposed method. This research offers
enhanced insights into the characteristics and distribution of cells, thereby
laying the groundwork for early diagnosis and treatment of diseases
Late Fusion Multiple Kernel Clustering With Proxy Graph Refinement
AbstractMultiple kernel clustering (MKC) optimally utilizes a group of pre-specified base kernels to improve clustering performance. Among existing MKC algorithms, the recently proposed late fusion MKC methods demonstrate promising clustering performance in various applications and enjoy considerable computational acceleration. However, we observe that the kernel partition learning and late fusion processes are separated from each other in the existing mechanism, which may lead to suboptimal solutions and adversely affect the clustering performance. In this article, we propose a novel late fusion multiple kernel clustering with proxy graph refinement (LFMKC-PGR) framework to address these issues. First, we theoretically revisit the connection between late fusion kernel base partition and traditional spectral embedding. Based on this observation, we construct a proxy self-expressive graph from kernel base partitions. The proxy graph in return refines the individual kernel partitions and also captures partition relations in graph structure rather than simple linear transformation. We also provide theoretical connections and considerations between the proposed framework and the multiple kernel subspace clustering. An alternate algorithm with proved convergence is then developed to solve the resultant optimization problem. After that, extensive experiments are conducted on 12 multi-kernel benchmark datasets, and the results demonstrate the effectiveness of our proposed algorithm. The code of the proposed algorithm is publicly available at https://github.com/wangsiwei2010/graphlatefusion_MKC.Abstract
Multiple kernel clustering (MKC) optimally utilizes a group of pre-specified base kernels to improve clustering performance. Among existing MKC algorithms, the recently proposed late fusion MKC methods demonstrate promising clustering performance in various applications and enjoy considerable computational acceleration. However, we observe that the kernel partition learning and late fusion processes are separated from each other in the existing mechanism, which may lead to suboptimal solutions and adversely affect the clustering performance. In this article, we propose a novel late fusion multiple kernel clustering with proxy graph refinement (LFMKC-PGR) framework to address these issues. First, we theoretically revisit the connection between late fusion kernel base partition and traditional spectral embedding. Based on this observation, we construct a proxy self-expressive graph from kernel base partitions. The proxy graph in return refines the individual kernel partitions and also captures partition relations in graph structure rather than simple linear transformation. We also provide theoretical connections and considerations between the proposed framework and the multiple kernel subspace clustering. An alternate algorithm with proved convergence is then developed to solve the resultant optimization problem. After that, extensive experiments are conducted on 12 multi-kernel benchmark datasets, and the results demonstrate the effectiveness of our proposed algorithm. The code of the proposed algorithm is publicly available at https://github.com/wangsiwei2010/graphlatefusion_MKC
- …