601 research outputs found

    On Continuous-Time Gaussian Channels

    Full text link
    A continuous-time white Gaussian channel can be formulated using a white Gaussian noise, and a conventional way for examining such a channel is the sampling approach based on the Shannon-Nyquist sampling theorem, where the original continuous-time channel is converted to an equivalent discrete-time channel, to which a great variety of established tools and methodology can be applied. However, one of the key issues of this scheme is that continuous-time feedback and memory cannot be incorporated into the channel model. It turns out that this issue can be circumvented by considering the Brownian motion formulation of a continuous-time white Gaussian channel. Nevertheless, as opposed to the white Gaussian noise formulation, a link that establishes the information-theoretic connection between a continuous-time channel under the Brownian motion formulation and its discrete-time counterparts has long been missing. This paper is to fill this gap by establishing causality-preserving connections between continuous-time Gaussian feedback/memory channels and their associated discrete-time versions in the forms of sampling and approximation theorems, which we believe will play important roles in the long run for further developing continuous-time information theory. As an immediate application of the approximation theorem, we propose the so-called approximation approach to examine continuous-time white Gaussian channels in the point-to-point or multi-user setting. It turns out that the approximation approach, complemented by relevant tools from stochastic calculus, can enhance our understanding of continuous-time Gaussian channels in terms of giving alternative and strengthened interpretation to some long-held folklore, recovering "long known" results from new perspectives, and rigorously establishing new results predicted by the intuition that the approximation approach carries

    Synchronization of dissipative dynamical systems driven by non-Gaussian Lévy noises

    Get PDF
    Dynamical systems driven by Gaussian noises have been considered extensively in modeling, simulation, and theory. However, complex systems in engineering and science are often subject to non-Gaussian fluctuations or uncertainties. A coupled dynamical system under a class of Lévy noises is considered. After discussing cocycle property, stationary orbits, and random attractors, a synchronization phenomenon is shown to occur, when the drift terms of the coupled system satisfy certain dissipativity and integrability conditions. The synchronization result implies that coupled dynamical systems share a dynamical feature in some asymptotic sense

    Blind Image Deblurring via Reweighted Graph Total Variation

    Full text link
    Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: i) estimate a blur kernel from the blurry image, and ii) given estimated blur kernel, de-convolve blurry input to restore the target image. In this paper, by interpreting an image patch as a signal on a weighted graph, we first argue that a skeleton image---a proxy that retains the strong gradients of the target but smooths out the details---can be used to accurately estimate the blur kernel and has a unique bi-modal edge weight distribution. We then design a reweighted graph total variation (RGTV) prior that can efficiently promote bi-modal edge weight distribution given a blurry patch. However, minimizing a blind image deblurring objective with RGTV results in a non-convex non-differentiable optimization problem. We propose a fast algorithm that solves for the skeleton image and the blur kernel alternately. Finally with the computed blur kernel, recent non-blind image deblurring algorithms can be applied to restore the target image. Experimental results show that our algorithm can robustly estimate the blur kernel with large kernel size, and the reconstructed sharp image is competitive against the state-of-the-art methods.Comment: 5 pages, submitted to IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Alberta, Canada, April, 201
    corecore