128 research outputs found

    Experimental Designs for Binary Data in Switching Measurements on Superconducting Josephson Junctions

    Full text link
    We study the optimal design of switching measurements of small Josephson junction circuits which operate in the macroscopic quantum tunnelling regime. Starting from the D-optimality criterion we derive the optimal design for the estimation of the unknown parameters of the underlying Gumbel type distribution. As a practical method for the measurements, we propose a sequential design that combines heuristic search for initial estimates and maximum likelihood estimation. The presented design has immediate applications in the area of superconducting electronics implying faster data acquisition. The presented experimental results confirm the usefulness of the method. KEY WORDS: optimal design, D-optimality, logistic regression, complementary log-log link, quantum physics, escape measurement

    Mechanism Design in Social Networks

    Get PDF
    This paper studies an auction design problem for a seller to sell a commodity in a social network, where each individual (the seller or a buyer) can only communicate with her neighbors. The challenge to the seller is to design a mechanism to incentivize the buyers, who are aware of the auction, to further propagate the information to their neighbors so that more buyers will participate in the auction and hence, the seller will be able to make a higher revenue. We propose a novel auction mechanism, called information diffusion mechanism (IDM), which incentivizes the buyers to not only truthfully report their valuations on the commodity to the seller, but also further propagate the auction information to all their neighbors. In comparison, the direct extension of the well-known Vickrey-Clarke-Groves (VCG) mechanism in social networks can also incentivize the information diffusion, but it will decrease the seller's revenue or even lead to a deficit sometimes. The formalization of the problem has not yet been addressed in the literature of mechanism design and our solution is very significant in the presence of large-scale online social networks.Comment: In The Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, US, 04-09 Feb 201

    Optimum Tariffs and Exhaustible Resources: Theory and Evidence for Gasoline

    Full text link
    Domestic consumption taxes on oil products largely differ across countries, ranging from very high subsidies to very high taxes. The empirical literature on the issue has highlighted the role of revenue-raising (Ramsey commodity taxation) and externalitycorrection (Pigovian taxation) motives for national taxation. Isolatedly, the theoretical literature on non-renewable-resource taxation has emphasized the role of the optimumtariff dimension of excise taxes which reflects countries’ non-cooperative exercise of their market power. This paper reconciles these two strands by comprehensively addressing the issue. First, we propose a multi-country model of national taxation with oil – modeled as a polluting exhaustible resource – and some regular commodities. Domestic welfare is maximized with respect to domestic taxes under a revenue-collection constraint. The optimal domestic tax on oil consumption not only consists of a Ramsey inverse-elasticity term and of a Pigovian term, but also of an optimum-tariff component. In fact, resource exhaustibility implies a form of supply inelasticity that magnifies optimum-tariff arguments. Second, based on a multiple regression using a data set with a large number of countries, we test the power of the optimum-tariff tax component in explaining national gasoline taxes. We find strong evidence that this component plays a crucial role in countries’ taxation of gasoline

    On the Interplay between Resource Extraction and Polluting Emissions in Oligopoly

    Get PDF
    This paper offers an overview of the literature discussing oligopoly games in which polluti ng emissions are generated by the supply of goods requiring a natural resource as an input. An analytical summary of the main features of the interplay between pollution and resource extraction is then given using a differential game based on the Cournot oligopoly model, in which (i) the bearings on resource preservation of Pigouvian tax rate tailored on emissions are singled out and (ii) the issue of the optimal number of firms in the commons is also addressed

    Terrestrial laser scanning for plot-scale forest measurement

    Get PDF
    Plot-scale measurements have been the foundation for forest surveys and reporting for over 200 years. Through recent integration with airborne and satellite remote sensing, manual measurements of vegetation structure at the plot scale are now the basis for landscape, continental and international mapping of our forest resources. The use of terrestrial laser scanning (TLS) for plot-scale measurement was first demonstrated over a decade ago, with the intimation that these instruments could replace manual measurement methods. This has not yet been the case, despite the unparalleled structural information that TLS can capture. For TLS to reach its full potential, these instruments cannot be viewed as a logical progression of existing plot-based measurement. TLS must be viewed as a disruptive technology that requires a rethink of vegetation surveys and their application across a wide range of disciplines. We review the development of TLS as a plotscale measurement tool, including the evolution of both instrument hardware and key data processing methodologies. We highlight two broad data modelling approaches of gap probability and geometrical modelling and the basic theory that underpins these. Finally, we discuss the future prospects for increasing the utilisation of TLS for plot-scale forest assessment and forest monitoring

    International Resource Tax Policies Beyond Rent Extraction

    Full text link
    We study the incentives of selfish governments to tax tradable primary inputs un- der asymmetric trade. Using an empirically-consistent model of endogenous growth, we obtain explicit links between persistent gaps in productivity growth and the observed tendency of resource-exporting (importing) countries to subsidize (tax) domestic resource use. Assuming uncoordinated maximization of domestic welfare, national governments wish to deviate (i) from inefficient laissez-faire equilibria as well as (ii) from efficient equilibria in which domestic distortions are internalized. The incentive of resource-rich countries to subsidize hinges on slower productivity growth and is disconnected from the typical incentive of importers to tax resource inflows. i.e., rent extraction. The model predictions concerning the impact of resource taxes on relative income shares are supported by empirical evidence

    Setting priorities for land management to mitigate climate change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production.</p> <p>Results</p> <p>In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option.</p> <p>Conclusions</p> <p>When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.</p

    Carbon inputs from Miscanthus displace older soil organic carbon without inducing priming

    Get PDF
    The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha−1 yr−1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ∌50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha−1 yr−1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years

    Forest carbon sequestration:the impact of forest management

    Get PDF
    In this chapter, we describe alternative ways in which forests and forestry can help to mítigate climate change, along with the potential impact of these activities. The three carbon storage compartments should be considered inall impact estimates. Carbon content in living biomass is easily estimated via species-specific equations or by applying factors to oven-dry biomass weights (e.g.,lbañez et al.,2002, Herrero et al.,2011,Castaño and Bravo, 2012).Litter carbon content has been analysed in many studies on primary forest productivity, though information regarding the influence of forest management on litter carbon content is less abundant (Blanco et al., 2006). In the last decade,efforts have been made to assess soil carbon in forests, but studies on the effect of forest management on soils show discrepancies (Lindner and Karjalainen,2007).Hoover (2011), for example,found no difference in forest floor carbon stocks among stands subjected to partial or complete harvest treatments in the United States.Instituto Universitario de Gestión Forestal Sostenibl

    Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    Get PDF
    Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.Peer reviewe
    • 

    corecore