26 research outputs found
Teknologi Pengolahan Gula Semut Aren pada Kelompok Tani di Kelurahan Penyengat Rendah Kota Jambi
Tanaman aren (Arenga pinata) merupakan salah satu tanaman yang diusahakan oleh masyarakat Kelurahan Penyengat Rendah Kecamatan Telanaipura Jambi. Terdapat sekitar 100 pohon aren tersebar di kawasan wilayah ini. Selama ini, nira aren dijual petani ke tempat usaha pembuatan tuak dan sebagian lagi olah menjadi gula aren cetak. Gula semut merupakan salah satu produk olahan nira aren yang berbentuk kristal yang memiliki harga lebih tinggi dibandingkan dengan gula aren cetak. Tujuan kegiatan Pengabdian Kepada Masyarakat ini adalah agar kelompok tani di Penyengat Rendah memiliki ilmu pengetahuan dan keterampilan mengolah nira aren menjadi gula semut. Sasaran kegiatan ini adalah Kelompok Wanita Tani Cherry dan Kelompok Tani Galusia di daerah Penyengat Rendah. Kegiatan dilakukan dalam bentuk pelatihan dan demonstrasi pembuatan gula semut. Kegiatan berjalan dengan lancar dan kelompok tani telah membuat gula semut secara mandiri dan menjual produknya ke konsumen
Fast video search and indexing for video surveillance applications with optimally controlled False Alarm Rates
Efficient joint noise removal and multi exposure fusion
Multi-exposure fusion (MEF) is a technique for combining different images of
the same scene acquired with different exposure settings into a single image.
All the proposed MEF algorithms combine the set of images, somehow choosing
from each one the part with better exposure.
We propose a novel multi-exposure image fusion chain taking into account
noise removal. The novel method takes advantage of DCT processing and the
multi-image nature of the MEF problem. We propose a joint fusion and denoising
strategy taking advantage of spatio-temporal patch selection and collaborative
3D thresholding. The overall strategy permits to denoise and fuse the set of
images without the need of recovering each denoised exposure image, leading to
a very efficient procedure
Redesain Kantor Jilbrave yang Merespon Iklim Mikro Berkonsep Kantor Tumbuh dengan Konsep Fun Interior
Kantor Jilbrave adalah kartor startup yang didirikan pada Februari 2017. Walaupun masih sangat muda, Jilbrave dapat berkembang sangat pesat hingga dapat menghasilkan omset 3 sampai 4 kali lipat pertahun dalam kurun waktu kurang dari 3 tahun dan mengalami penambahan pegawai secara signifikan Namun dengan kepesatan usaha kantor ini, terdapat permasalahan yaitu ketahanan ruangan-ruangan pada kantor dalam menghadapi cuaca yang memiliki curah hujan tinggi dan sangat lembab. Dalam proses merancang ulang kantor jilbrave, terdapat beberapa tahapan yang harus dilakukan sebelum mendapatkan desain akhir berupa konsep, gambar kerja, suasana ruang dalam bentuk 3D dan rencana anggaran biaya. Oleh karena itu pemecahan masalah seperti pengendalian kelembapan udara dan tentang kantor tumbuh harus di pecahkan dan diterapkan. Dengan konsep urban modern dan tema fun akan menambah pemecahan masalah tentang identitas kantor. Konsep ini diharapkan dapat memberikan Kenyamanan terhadap penggunanya, dan dapat dijadikan contoh desain perkantoran dengan permasalahan serupa
A blind definition of shape
In this note, we propose a general definition of shape which is
both compatible with the one proposed in phenomenology
(gestaltism) and with a computer vision implementation. We reverse
the usual order in Computer Vision. We do not define “shape
recognition" as a task which requires a “model" pattern which is
searched in all images of a certain kind. We give instead a
“blind" definition of shapes relying
only on invariance and repetition arguments.
Given a set of images , we call shape of this set any
spatial pattern which can be found at several locations of some
image, or in several different images of . (This means
that the shapes of a set of images are defined without any a priori assumption or knowledge.) The definition is powerful when
it is invariant and we prove that the following invariance
requirements can be matched in theory and in practice: local
contrast invariance, robustness to blur, noise and sampling,
affine deformations. We display experiments with single images and image pairs. In each
case,
we display the detected shapes. Surprisingly enough, but in accordance
with Gestalt theory,
the repetition of shapes is so frequent in human environment, that many
shapes can even be learned
from single images
Conditional image diffusion
In this paper, a theoretical framework for the conditional diffusion ofdigitalimagesispresented. Differentapproacheshavebeenproposed to solve this problem by extrapolating the idea of the anisotropic diffusionforagreylevelimagestovector-valuedimages. Then, thediffusion of each channel is conditioned to a direction which normally takes into account information from all channels. In our approach, the diffusion model assumes the a priori knowledge of the diffusion direction during all the process. The consistency of the model is shown by proving the existence and uniqueness of solution for the proposed equation from the viscosity solutions theory. Also a numerical scheme adapted to this equation based on the neighborhood filter is proposed. Finally, we discuss severalapplicationsand we comparethe correspondingnumerical schemes for the proposed model.