1,359 research outputs found
Surface Comparison with Mass Transportation
We use mass-transportation as a tool to compare surfaces (2-manifolds). In
particular, we determine the "similarity" of two given surfaces by solving a
mass-transportation problem between their conformal densities. This mass
transportation problem differs from the standard case in that we require the
solution to be invariant under global M\"obius transformations. Our approach
provides a constructive way of defining a metric in the abstract space of
simply-connected smooth surfaces with boundary (i.e. surfaces of disk-type);
this metric can also be used to define meaningful intrinsic distances between
pairs of "patches" in the two surfaces, which allows automatic alignment of the
surfaces. We provide numerical experiments on "real-life" surfaces to
demonstrate possible applications in natural sciences
Tetrisation of triangular meshes and its application in shape blending
The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile
technique for morphing, surface modelling, and mesh editing. We discuss an
improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh
in 3D space, we introduce a method to associate a tetrahedral structure, which
encodes the geometry of the original mesh. 2. We use a Lie algebra based method
to interpolate local transformation, which provides better handling of rotation
with large angle. 3. We propose a new error function to compile local
transformations into a global piecewise linear map, which is rotation invariant
and easy to minimise. We implemented a shape blender based on our algorithm and
its MIT licensed source code is available online
Algorithms to automatically quantify the geometric similarity of anatomical surfaces
We describe new approaches for distances between pairs of 2-dimensional
surfaces (embedded in 3-dimensional space) that use local structures and global
information contained in inter-structure geometric relationships. We present
algorithms to automatically determine these distances as well as geometric
correspondences. This is motivated by the aspiration of students of natural
science to understand the continuity of form that unites the diversity of life.
At present, scientists using physical traits to study evolutionary
relationships among living and extinct animals analyze data extracted from
carefully defined anatomical correspondence points (landmarks). Identifying and
recording these landmarks is time consuming and can be done accurately only by
trained morphologists. This renders these studies inaccessible to
non-morphologists, and causes phenomics to lag behind genomics in elucidating
evolutionary patterns. Unlike other algorithms presented for morphological
correspondences our approach does not require any preliminary marking of
special features or landmarks by the user. It also differs from other seminal
work in computational geometry in that our algorithms are polynomial in nature
and thus faster, making pairwise comparisons feasible for significantly larger
numbers of digitized surfaces. We illustrate our approach using three datasets
representing teeth and different bones of primates and humans, and show that it
leads to highly accurate results.Comment: Changes with respect to v1, v2: an Erratum was added, correcting the
references for one of the three datasets. Note that the datasets and code for
this paper can be obtained from the Data Conservancy (see Download column on
v1, v2
Local syzygies of multiplier ideals
In recent years, multiplier ideals have found many applications in local and
global algebraic geometry. Because of their importance, there has been some
interest in the question of which ideals on a smooth complex variety can be
realized as multiplier ideals. Other than integral closure no local
obstructions have been known up to now, and in dimension two it was established
by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is
locally a multiplier ideal. We prove the somewhat unexpected result that
multiplier ideals in fact satisfy some rather strong algebraic properties
involving higher syzygies. It follows that in dimensions three and higher,
multiplier ideals are very special among all integrally closed ideals.Comment: 8 page
On the Complexity of Searching in Trees: Average-case Minimization
We focus on the average-case analysis: A function w : V -> Z+ is given which
defines the likelihood for a node to be the one marked, and we want the
strategy that minimizes the expected number of queries. Prior to this paper,
very little was known about this natural question and the complexity of the
problem had remained so far an open question.
We close this question and prove that the above tree search problem is
NP-complete even for the class of trees with diameter at most 4. This results
in a complete characterization of the complexity of the problem with respect to
the diameter size. In fact, for diameter not larger than 3 the problem can be
shown to be polynomially solvable using a dynamic programming approach.
In addition we prove that the problem is NP-complete even for the class of
trees of maximum degree at most 16. To the best of our knowledge, the only
known result in this direction is that the tree search problem is solvable in
O(|V| log|V|) time for trees with degree at most 2 (paths).
We match the above complexity results with a tight algorithmic analysis. We
first show that a natural greedy algorithm attains a 2-approximation.
Furthermore, for the bounded degree instances, we show that any optimal
strategy (i.e., one that minimizes the expected number of queries) performs at
most O(\Delta(T) (log |V| + log w(T))) queries in the worst case, where w(T) is
the sum of the likelihoods of the nodes of T and \Delta(T) is the maximum
degree of T. We combine this result with a non-trivial exponential time
algorithm to provide an FPTAS for trees with bounded degree
Big Line Bundles over Arithmetic Varieties
We prove a Hilbert-Samuel type result of arithmetic big line bundles in
Arakelov geometry, which is an analogue of a classical theorem of Siu. An
application of this result gives equidistribution of small points over
algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also
generalize Chambert-Loir's non-archimedean equidistribution
Asymptotic Behavior of Ext functors for modules of finite complete intersection dimension
Let be a local ring, and let and be finitely generated
-modules such that has finite complete intersection dimension. In this
paper we define and study, under certain conditions, a pairing using the
modules \Ext_R^i(M,N) which generalizes Buchweitz's notion of the Herbrand
diference. We exploit this pairing to examine the number of consecutive
vanishing of \Ext_R^i(M,N) needed to ensure that \Ext_R^i(M,N)=0 for all
. Our results recover and improve on most of the known bounds in the
literature, especially when has dimension at most two
Consistent as-similar-as-possible non-isometric surface registration
© 2017 The Author(s)Non-isometric surface registration, aiming to align two surfaces with different sizes and details, has been widely used in computer animation industry. Various existing surface registration approaches have been proposed for accurate template fitting; nevertheless, two challenges remain. One is how to avoid the mesh distortion and fold over of surfaces during transformation. The other is how to reduce the amount of landmarks that have to be specified manually. To tackle these challenges simultaneously, we propose a consistent as-similar-as-possible (CASAP) surface registration approach. With a novel defined energy, it not only achieves the consistent discretization for the surfaces to produce accurate result, but also requires a small number of landmarks with little user effort only. Besides, CASAP is constrained as-similar-as-possible so that angles of triangle meshes are preserved and local scales are allowed to change. Extensive experimental results have demonstrated the effectiveness of CASAP in comparison with the state-of-the-art approaches
Evolution favors protein mutational robustness in sufficiently large populations
BACKGROUND: An important question is whether evolution favors properties such
as mutational robustness or evolvability that do not directly benefit any
individual, but can influence the course of future evolution. Functionally
similar proteins can differ substantially in their robustness to mutations and
capacity to evolve new functions, but it has remained unclear whether any of
these differences might be due to evolutionary selection for these properties.
RESULTS: Here we use laboratory experiments to demonstrate that evolution
favors protein mutational robustness if the evolving population is sufficiently
large. We neutrally evolve cytochrome P450 proteins under identical selection
pressures and mutation rates in populations of different sizes, and show that
proteins from the larger and thus more polymorphic population tend towards
higher mutational robustness. Proteins from the larger population also evolve
greater stability, a biophysical property that is known to enhance both
mutational robustness and evolvability. The excess mutational robustness and
stability is well described by existing mathematical theories, and can be
quantitatively related to the way that the proteins occupy their neutral
network.
CONCLUSIONS: Our work is the first experimental demonstration of the general
tendency of evolution to favor mutational robustness and protein stability in
highly polymorphic populations. We suggest that this phenomenon may contribute
to the mutational robustness and evolvability of viruses and bacteria that
exist in large populations
Applications of patching to quadratic forms and central simple algebras
This paper provides applications of patching to quadratic forms and central
simple algebras over function fields of curves over henselian valued fields. In
particular, we use a patching approach to reprove and generalize a recent
result of Parimala and Suresh on the u-invariant of p-adic function fields, for
p odd. The strategy relies on a local-global principle for homogeneous spaces
for rational algebraic groups, combined with local computations.Comment: 48 pages; connectivity now required in the definition of rational
group; beginning of Section 4 reorganized; other minor change
- …
