3 research outputs found
Table1_A multiphase contrast-enhanced CT radiomics model for prediction of human epidermal growth factor receptor 2 status in advanced gastric cancer.DOCX
Background: Accurate evaluation of human epidermal growth factor receptor 2 (HER2) status is of great importance for appropriate management of advanced gastric cancer (AGC) patients. This study aims to develop and validate a CT-based radiomics model for prediction of HER2 overexpression in AGC.Materials and Methods: Seven hundred and forty-five consecutive AGC patients (median age, 59 years; interquartile range, 52–66 years; 515 male and 230 female) were enrolled and separated into training set (n = 521) and testing set (n = 224) in this retrospective study. Radiomics features were extracted from three phases images of contrast-enhanced CT scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator method. Univariable and multivariable logistical regression analysis were used to establish predictive model with independent risk factors of HER2 overexpression. The predictive performance of radiomics model was assessed in the training and testing sets.Results: The positive rate of HER2 was 15.9% and 13.8% in the training set and testing set, respectively. The positive rate of HER2 in intestinal-type GC was significantly higher than that in diffuse-type GC. The radiomics signature comprised eight robust features demonstrated good discrimination ability for HER2 overexpression in the training set (AUC = 0.84) and the testing set (AUC = 0.78). A radiomics-based model that incorporated radiomics signature and pathological type showed good discrimination and calibration in the training (AUC = 0.85) and testing (AUC = 0.84) sets.Conclusion: The proposed radiomics model showed favorable accuracy for prediction of HER2 overexpression in AGC.</p
DataSheet_1_Characteristics of the pulmonary microbiota in patients with mild and severe pulmonary infection.pdf
BackgroundLung infection is a global health problem associated with high morbidity and mortality and increasing rates of hospitalization. The correlation between pulmonary microecology and infection severity remains unclear. Therefore, the purpose of this study was to investigate the differences in lung microecology and potential biomarkers in patients with mild and severe pulmonary infection.MethodPatients with pulmonary infection or suspected infection were divided into the mild group (140 cases) and the severe group (80 cases) according to pneomonia severity index (PSI) scores. Here, we used metagenomic next-generation sequencing (mNGS) to detect DNA mainly from bronchoalveolar lavage fluid (BALF) collected from patients to analyze changes in the lung microbiome of patients with different disease severity.ResultWe used the mNGS to analyze the pulmonary microecological composition in patients with pulmonary infection. The results of alpha diversity and beta diversity analysis showed that the microbial composition between mild and severe groups was similar on the whole. The dominant bacteria were Acinetobacter, Bacillus, Mycobacterium, Staphylococcus, and Prevotella, among others. Linear discriminant analysis effect size (LEfSe) results showed that there were significant differences in virus composition between the mild and severe patients, especially Simplexvirus and Cytomegalovirus, which were prominent in the severe group. The random forest model screened 14 kinds of pulmonary infection-related pathogens including Corynebacterium, Mycobacterium, Streptococcus, Klebsiella, and Acinetobacter. In addition, it was found that Rothia was negatively correlated with Acinetobacter, Mycobacterium, Bacillus, Enterococcus, and Klebsiella in the mild group through co-occurrence network, while no significant correlation was found in the severe group.ConclusionHere, we describe the composition and diversity of the pulmonary microbiome in patients with pulmonary infection. A significant increase in viral replication was found in the severe group, as well as a significant difference in microbial interactions between patients with mild and severe lung infections, particularly the association between the common pathogenic bacteria and Rothia. This suggests that both pathogen co-viral infection and microbial interactions may influence the course of disease. Of course, more research is needed to further explore the specific mechanisms by which microbial interactions influence disease severity.</p
Table_1_A novel nomogram model combining CT texture features and urine energy metabolism to differentiate single benign from malignant pulmonary nodule.docx
ObjectiveTo investigate a novel diagnostic model for benign and malignant pulmonary nodule diagnosis based on radiomic and clinical features, including urine energy metabolism index.MethodsA total of 107 pulmonary nodules were prospectively recruited and pathologically confirmed as malignant in 86 cases and benign in 21 cases. A chest CT scan and urine energy metabolism test were performed in all cases. A nomogram model was established in combination with radiomic and clinical features, including urine energy metabolism levels. The nomogram model was compared with the radiomic model and the clinical feature model alone to test its diagnostic validity, and receiver operating characteristic (ROC) curves were plotted to assess diagnostic validity.ResultsThe nomogram was established using a logistic regression algorithm to combine radiomic features and clinical characteristics including urine energy metabolism results. The predictive performance of the nomogram was evaluated using the area under the ROC and calibration curve, which showed the best performance, area under the curve (AUC) = 0.982, 95% CI = 0.940–1.000, compared to clinical and radiomic models in the testing cohort. The clinical benefit of the model was assessed using the decision curve analysis (DCA) and using the nomogram for benign and malignant pulmonary nodules, and preoperative prediction of benign and malignant pulmonary nodules using nomograms showed better clinical benefit.ConclusionThis study shows that a coupled model combining CT imaging features and clinical features (including urine energy metabolism) in combination with the nomogram model has higher diagnostic performance than the radiomic and clinical models alone, suggesting that the combination of both methods is more advantageous in identifying benign and malignant pulmonary nodules.</p