196,536 research outputs found

    B\"acklund-Darboux Transformations and Discretizations of Super KdV Equation

    Full text link
    For a generalized super KdV equation, three Darboux transformations and the corresponding B\"acklund transformations are constructed. The compatibility of these Darboux transformations leads to three discrete systems and their Lax representations. The reduction of one of the B\"acklund-Darboux transformations and the corresponding discrete system are considered for Kupershmidt's super KdV equation. When all the odd variables vanish, a nonlinear superposition formula is obtained for Levi's B\"acklund transformation for the KdV equation

    Achieving Secrecy Capacity of the Gaussian Wiretap Channel with Polar Lattices

    Full text link
    In this work, an explicit wiretap coding scheme based on polar lattices is proposed to achieve the secrecy capacity of the additive white Gaussian noise (AWGN) wiretap channel. Firstly, polar lattices are used to construct secrecy-good lattices for the mod-Λs\Lambda_s Gaussian wiretap channel. Then we propose an explicit shaping scheme to remove this mod-Λs\Lambda_s front end and extend polar lattices to the genuine Gaussian wiretap channel. The shaping technique is based on the lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. By employing the asymmetric polar coding technique, we construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously. As a result, the encoding complexity for the sender and the decoding complexity for the legitimate receiver are both O(N logN log(logN)). The proposed scheme is proven to be semantically secure.Comment: Submitted to IEEE Trans. Information Theory, revised. This is the authors' own version of the pape

    Thermodynamics of modified black holes from gravity's rainbow

    Full text link
    We study the thermodynamics of modified black holes proposed in the context of gravity's rainbow. A notion of intrinsic temperature and entropy for these black holes is introduced. In particular for a specific class of modified Schwarzschild solutions, their temperature and entropy are obtained and compared with those previously obtained from modified dispersion relations in deformed special relativity. It turns out that the results of these two different strategies coincide, and this may be viewed as a support for the proposal of deformed equivalence principle.Comment: 3 pages, Revte

    Construction of Capacity-Achieving Lattice Codes: Polar Lattices

    Full text link
    In this paper, we propose a new class of lattices constructed from polar codes, namely polar lattices, to achieve the capacity \frac{1}{2}\log(1+\SNR) of the additive white Gaussian-noise (AWGN) channel. Our construction follows the multilevel approach of Forney \textit{et al.}, where we construct a capacity-achieving polar code on each level. The component polar codes are shown to be naturally nested, thereby fulfilling the requirement of the multilevel lattice construction. We prove that polar lattices are \emph{AWGN-good}. Furthermore, using the technique of source polarization, we propose discrete Gaussian shaping over the polar lattice to satisfy the power constraint. Both the construction and shaping are explicit, and the overall complexity of encoding and decoding is O(NlogN)O(N\log N) for any fixed target error probability.Comment: full version of the paper to appear in IEEE Trans. Communication
    corecore