368,122 research outputs found

    Achieving Secrecy Capacity of the Gaussian Wiretap Channel with Polar Lattices

    Full text link
    In this work, an explicit wiretap coding scheme based on polar lattices is proposed to achieve the secrecy capacity of the additive white Gaussian noise (AWGN) wiretap channel. Firstly, polar lattices are used to construct secrecy-good lattices for the mod-Λs\Lambda_s Gaussian wiretap channel. Then we propose an explicit shaping scheme to remove this mod-Λs\Lambda_s front end and extend polar lattices to the genuine Gaussian wiretap channel. The shaping technique is based on the lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. By employing the asymmetric polar coding technique, we construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously. As a result, the encoding complexity for the sender and the decoding complexity for the legitimate receiver are both O(N logN log(logN)). The proposed scheme is proven to be semantically secure.Comment: Submitted to IEEE Trans. Information Theory, revised. This is the authors' own version of the pape

    B\"acklund-Darboux Transformations and Discretizations of Super KdV Equation

    Full text link
    For a generalized super KdV equation, three Darboux transformations and the corresponding B\"acklund transformations are constructed. The compatibility of these Darboux transformations leads to three discrete systems and their Lax representations. The reduction of one of the B\"acklund-Darboux transformations and the corresponding discrete system are considered for Kupershmidt's super KdV equation. When all the odd variables vanish, a nonlinear superposition formula is obtained for Levi's B\"acklund transformation for the KdV equation

    An organized lie & hope in 2018

    Full text link
    This article was originally published in The Prophet -- a journal created by and for the students at the Boston University School of Theology (BUSTH) to amplify the voices of STH students by promoting and sharing a range of perspectives on matters of concern including, but not limited to, spiritual practices, faith communities and society, the nature of theology, and current affairs. It serves as a platform for STH students to share their academic work, theological reflections, and life experiences with one another and the wider community

    The kinematics of particles moving in rainbow spacetime

    Get PDF
    The kinematics of particles moving in rainbow spacetime is studied in this paper. In particular the geodesics of a massive particle in rainbow flat spacetime is obtained when the semi-classical effect of its own energy on the background is taken into account. We show that in general the trajectory of a freely falling particle remains unchanged which is still a straight line as in the flat spacetime. The implication to the Unruh effect in rainbow flat spacetime is also discussed.Comment: 5 page
    corecore