669 research outputs found
A high-resolution map of human evolutionary constraint using 29 mammals
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
A high-resolution map of human evolutionary constraint using 29 mammals
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
Performance of Microarray and Liquid Based Capture Methods for Target Enrichment for Massively Parallel Sequencing and SNP Discovery
Targeted sequencing is a cost-efficient way to obtain answers to biological questions in many projects, but the choice of the enrichment method to use can be difficult. In this study we compared two hybridization methods for target enrichment for massively parallel sequencing and single nucleotide polymorphism (SNP) discovery, namely Nimblegen sequence capture arrays and the SureSelect liquid-based hybrid capture system. We prepared sequencing libraries from three HapMap samples using both methods, sequenced the libraries on the Illumina Genome Analyzer, mapped the sequencing reads back to the genome, and called variants in the sequences. 74–75% of the sequence reads originated from the targeted region in the SureSelect libraries and 41–67% in the Nimblegen libraries. We could sequence up to 99.9% and 99.5% of the regions targeted by capture probes from the SureSelect libraries and from the Nimblegen libraries, respectively. The Nimblegen probes covered 0.6 Mb more of the original 3.1 Mb target region than the SureSelect probes. In each sample, we called more SNPs and detected more novel SNPs from the libraries that were prepared using the Nimblegen method. Thus the Nimblegen method gave better results when judged by the number of SNPs called, but this came at the cost of more over-sampling
A quantitative framework for characterizing the evolutionary history of mammalian gene expression
The evolutionary history of a gene helps predict its function and relationship to phenotypic traits. Although sequence conservation is commonly used to decipher gene function and assess medical relevance, methods for functional inference from comparative expression data are lacking. Here, we use RNA-seq across seven tissues from 17 mammalian species to show that expression evolution across mammals is accurately modeled by the Ornstein–Uhlenbeck process, a commonly proposed model of continuous trait evolution. We apply this model to identify expression pathways under neutral, stabilizing, and directional selection. We further demonstrate novel applications of this model to quantify the extent of stabilizing selection on a gene’s expression, parameterize the distribution of each gene’s optimal expression level, and detect deleterious expression levels in expression data from individual patients. Our work provides a statistical framework for interpreting expression data across species and in disease
How to make a rodent giant: Genomic basis and tradeoffs of gigantism in the capybara, the world\u27s largest rodent
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world\u27s largest living rodent. We found that the genome-wide ratio of non-synonymous to synonymous mutations (omega) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly-neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling post-natal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer
Системний підхід у соціальній адаптації студентів-іноземців
SUMMARY: High-throughput genotyping and sequencing technologies facilitate studies of complex genetic traits and provide new research opportunities. The increasing popularity of genome-wide association studies (GWAS) leads to the discovery of new associated loci and a better understanding of the genetic architecture underlying not only diseases, but also other monogenic and complex phenotypes. Several softwares are available for performing GWAS analyses, R environment being one of them. RESULTS: We present cgmisc, an R package that enables enhanced data analysis and visualisation of results from GWAS. The package contains several utilities and modules that complement and enhance the functionality of the existing software. It also provides several tools for advanced visualisation of genomic data and utilises the power of the R language to aid in preparation of publication-quality figures. Some of the package functions are specific for the domestic dog (Canis familiaris) data. AVAILABILITY: The package is operating system-independent and is available from: https://github.com/cgmisc-team/cgmisc CONTACT: [email protected]
Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy
Pug dogs with thoracolumbar myelopathy (PDM) present with a specific clinical phenotype that includes progressive pelvic limb ataxia and paresis, commonly accompanied by incontinence. Vertebral column malformations and lesions, excessive scar tissue of the meninges, and central nervous system inflammation have been described. PDM has a late onset and affects more male than female dogs. The breed-specific presentation of the disorder suggests that genetic risk factors are involved in the disease development. To perform a genome-wide search for PDM-associated loci, we applied a Bayesian model adapted for mapping complex traits (BayesR) and a cross-population extended haplotype homozygosity test (XP-EHH) in 51 affected and 38 control pugs. Nineteen associated loci (harboring 67 genes in total, including 34 potential candidate genes) and three candidate regions under selection (with four genes within or next to the signal) were identified. The multiple candidate genes identified have implicated functions in bone homeostasis, fibrotic scar tissue, inflammatory responses, or the formation, regulation, and differentiation of cartilage, suggesting the potential relevance of these processes to the pathogenesis of PDM
The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations
Motivation: The naked mole rat (Heterocephalus glaber) is an exceptionally long-lived and cancer-resistant rodent native to East Africa. Although its genome was previously sequenced, here we report a new assembly sequenced by us with substantially higher N50 values for scaffolds and contigs. Results: We analyzed the annotation of this new improved assembly and identified candidate genomic adaptations which may have contributed to the evolution of the naked mole rat’s extraordinary traits, including in regions of p53, and the hyaluronan receptors CD44 and HMMR (RHAMM). Furthermore, we developed a freely available web portal, the Naked Mole Rat Genome Resource (http://www.naked-mole-rat.org), featuring the data and results of our analysis, to assist researchers interested in the genome and genes of the naked mole rat, and also to facilitate further studies on this fascinating species. Availability and implementation: The Naked Mole Rat Genome Resource is freely available online at http://www.naked-mole-rat.org. This resource is open source and the source code is available at https://github.com/maglab/naked-mole-rat-portal. Contact: [email protected]
- …