29,855 research outputs found
Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester
Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002],
we introduce a new query complexity model, which we call bomb query complexity
. We investigate its relationship with the usual quantum query complexity
, and show that .
This result gives a new method to upper bound the quantum query complexity:
we give a method of finding bomb query algorithms from classical algorithms,
which then provide nonconstructive upper bounds on .
We subsequently were able to give explicit quantum algorithms matching our
upper bound method. We apply this method on the single-source shortest paths
problem on unweighted graphs, obtaining an algorithm with quantum
query complexity, improving the best known algorithm of [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite
matching problem gives an algorithm, improving the best known
trivial upper bound.Comment: 32 pages. Minor revisions and corrections. Regev and Schiff's proof
that P(OR) = \Omega(N) remove
Analytical result on the supercurrent through a superconductor/quantum-dot/superconductor junction
We present an analytical result for the supercurrent across a
superconductor/quantum-dot/superconductor junction. By converting the current
integration into a special contour integral, we can express the current as a
sum of the residues of poles. These poles are real and give a natural
definition of the Andreev bound states. We also use the exact result to explain
some features of the supercurrent transport behavior.Comment: 8 pages, 2 figure
Image Type Water Meter Character Recognition Based on Embedded DSP
In the paper, we combined DSP processor with image processing algorithm and
studied the method of water meter character recognition. We collected water
meter image through camera at a fixed angle, and the projection method is used
to recognize those digital images. The experiment results show that the method
can recognize the meter characters accurately and artificial meter reading is
replaced by automatic digital recognition, which improves working efficiency
Suppression of long-wavelength CMB spectrum from the no-boundary initial condition
The lack of correlations at the long-wavelength scales of the cosmic
microwave background spectrum is a long-standing puzzle and it persists in the
latest Planck data. By considering the Hartle-Hawking no-boundary wave function
as the initial condition of the inflationary universe, we propose that the
power suppression can be the consequence of a massive inflaton, whose initial
vacuum is the Euclidean instanton in a compact manifold. We calculate the
primordial power spectrum of the perturbations, and find that as long as the
scalar field is moderately massive, the power spectrum is suppressed at the
long-wavelength scales.Comment: 9 pages, 7 figures; journal versio
Andreev reflection through a quantum dot coupled with two ferromagnets and a superconductor
We study the Andreev reflection (AR) in a three terminal mesoscopic hybrid
system, in which two ferromagnets (F and F) are coupled to a
superconductor (S) through a quantum dot (QD). By using non-equilibrium Green
function, we derive a general current formula which allows arbitrary spin
polarizations, magnetization orientations and bias voltages in F and F.
The formula is applied to study both zero bias conductance and finite bias
current. The current conducted by crossed AR involving F, F and S is
particularly unusual, in which an electron with spin incident from
one of the ferromagnets picks up another electron with spin from
the other one, both enter S and form a Cooper pair. Several special cases are
investigated to reveal the properties of AR in this system.Comment: 15 pages, 7 figures, LaTe
Probing Spin States of Coupled Quantum Dots by dc Josephson Current
We propose an idea for probing spin states of two coupled quantum dots (CQD),
by the dc Josephson current flowing through them. This theory requires weak
coupling between CQD and electrodes, but allows arbitrary inter-dot tunnel
coupling, intra- and inter- dot Coulomb interactions. We find that the Coulomb
blockade peaks exhibit a non-monotonous dependence on the Zeeman splitting of
CQD, which can be understood in terms of the Andreev bound states. More
importantly, the supercurrent in the Coulomb blockade valleys may provide the
information of the spin states of CQD: for CQD with total electron number N=1,3
(odd), the supercurrent will reverse its sign if CQD becomes a magnetic
molecule; for CQD with N=2 (even), the supercurrent will decrease sharply
around the transition between the spin singlet and triplet ground states of
CQD.Comment: 10 pages, 3 figure
- …