9,729 research outputs found

    Explaining the observed velocity dispersion of dwarf galaxies by baryonic mass loss during the first collapse

    Full text link
    In the widely adopted LambdaCDM scenario for galaxy formation, dwarf galaxies are the building blocks of larger galaxies. Since they formed at relatively early epochs when the background density was relatively high, they are expected to retain their integrity as satellite galaxies when they merge to form larger entities. Although many dwarf spheroidal galaxies (dSphs) are found in the galactic halo around the Milky Way, their phase space density (or velocity dispersion) appears to be significantly smaller than that expected for satellite dwarf galaxies in the LambdaCDM scenario. In order to account for this discrepancy, we consider the possibility that they may have lost a significant fraction of their baryonic matter content during the first infall at the Hubble expansion turnaround. Such mass loss arises naturally due to the feedback by relatively massive stars which formed in their centers briefly before the maximum contraction. Through a series of N-body simulations, we show that the timely loss of a significant fraction of the dSphs initial baryonic matter content can have profound effects on their asymptotic half-mass radius, velocity dispersion, phase-space density, and the mass fraction between residual baryonic and dark matter.Comment: 6 pages, 6 figures, accepted for publication in the Ap

    Migration and Final Location of Hot Super Earths in the Presence of Gas Giants

    Full text link
    Based on the conventional sequential-accretion paradigm, we have proposed that, during the migration of first-born gas giants outside the orbits of planetary embryos, super Earth planets will form inside the 2:1 resonance location by sweeping of mean motion resonances (Zhou et al. 2005). In this paper, we study the subsequent evolution of a super Earth (m_1) under the effects of tidal dissipation and perturbation from a first-born gas giant (m_2) in an outside orbit. Secular perturbation and mean motion resonances (especially 2:1 and 5:2 resonances) between m_1 and m_2 excite the eccentricity of m_1, which causes the migration of m_1 and results in a hot super Earth. The calculated final location of the hot super Earth is independent of the tidal energy dissipation factor Q'. The study of migration history of a Hot Super Earth is useful to reveal its Q' value and to predict its final location in the presence of one or more hot gas giants. When this investigation is applied to the GJ876 system, it correctly reproduces the observed location of GJ876d around 0.02AU.Comment: 7 pages, 4 figure

    WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation

    Full text link
    The class of exotic Jupiter-mass planets that orbit very close to their parent stars were not explicitly expected before their discovery. The recently found transiting planet WASP-12b has a mass Mp = 1.4(+/-0.1) Jupiter masses (MJ), a mean orbital distance of only 3.1 stellar radii (meaning it is subject to intense tidal forces), and a period of 1.1 days. Its radius 1.79(+/- 0.09) RJ is unexpectedly large and its orbital eccentricity 0.049(+/-0:015) is even more surprising as such close orbits are in general quickly circularized. Here we report an analysis of its properties, which reveals that the planet is losing mass to its host star at a rate ~ 10^-7 MJ yr^-1. The planets surface is distorted by the stars gravity and the light curve produced by its prolate shape will differ by about ten per cent from that of a spherical planet. We conclude that dissipation of the stars tidal perturbation in the planets convective envelope provides the energy source for its large volume. We predict up to 10mJy CO band-head (2.292 micron) emission from a tenuous disk around the host star, made up of tidally stripped planetary gas. It may also contain a detectable resonant super-Earth, as a hypothetical perturber that continually stirs up WASP-12b's eccentricity.Comment: Accepted to Nature, 14 pages, 1 figur

    Dust capture and long-lived density enhancements triggered by vortices in 2D protoplanetary disks

    Full text link
    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global simulations of disks with dust, namely 2048x4096 grid points. This allows to study the dust evolution well beyond vortex dissipation. We vary a wide range of parameters, most notably the dust-to-gas ratio in the initial setup varies in the range 10−310^{-3} to 0.10.1. Irrespective of the initial dust-to-gas ratio we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of order unity inside the vortex. We present an analytical model that describes very well the dust capture process inside vortices, finding consistent results for all dust-to-gas ratios. A vortex streaming instability develops which causes invariably vortex destruction. After vortex dissipation large-scale dust-rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of order unity. The rings are long lived lasting as long as the duration of the simulations. They also develop a streaming instability, which manifests itself in eddies at various scales within which the dust forms compact high density clumps. Such clumps would be unstable to gravitational collapse in absence of strong dissipation by viscous forces. When vortices are particularly long lived, rings do not form but dust clumps inside vortices become then long lived features and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex ring.Comment: Preprint version, submitted to the Astrophysical Journal. Due to size constraints on ArXiv, some plots are at low resolution JPEG

    Dynamical rearrangement of super-Earths during disk dispersal I. Outline of the magnetospheric rebound model

    Full text link
    The Kepler mission has discovered that multiple close-in super-Earth planets are common around solar-type stars, but their period ratios do not show strong pile-ups near mean motion resonances (MMRs). One scenario is that super-Earths form in a gas-rich disk, and they interact gravitationally with the surrounding gas, inducing their orbital migration. Disk migration theory predicts, however, that planets would end up at resonant orbits due to their differential migration speed. Motivated by the discrepancy between observation and theory, we seek for a mechanism that moves planets out of resonances. We examine the orbital evolution of planet pairs near the magnetospheric cavity during the gas disk dispersal phase. Our study determines the conditions under which planets can escape resonances. We perform two-planet N-body simulations, varying the planet masses, stellar magnetic field strengths, disk accretion rates and gas disk depletion timescales. As planets migrate outward with the expanding magnetospheric cavity, their dynamical configurations can be rearranged. Migration of planets is substantial (minor) in a massive (light) disk. When the outer planet is more massive than the inner planet, the period ratio of two planets increases through outward migration. On the other hand, when the inner planet is more massive, the final period ratio tends to remain similar to the initial one. Larger stellar magnetic field strengths result in planets stopping their migration at longer periods. We highlight \textit{magnetospheric rebound} as an important ingredient able to reconcile disk migration theory with observations. Even when planets are trapped into MMR during the early gas-rich stage, subsequent cavity expansion would induce substantial changes to their orbits, moving them out of resonance.Comment: 10 pages, 5 figures, accepted for publication in A&

    Intersection representation of digraphs in trees with few leaves

    Full text link
    The leafage of a digraph is the minimum number of leaves in a host tree in which it has a subtree intersection representation. We discuss bounds on the leafage in terms of other parameters (including Ferrers dimension), obtaining a string of sharp inequalities.Comment: 12 pages, 3 included figure

    The leafage of a chordal graph

    Full text link
    The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - (1/2) lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.Comment: 19 pages, 3 figure

    Galacto-forensic of LMC's orbital history as a probe for the dark matter potential in the outskirt of the Galaxy

    Full text link
    The 3D observed velocities of the Large and Small Magellanic Clouds(LMC and SMC) provide an opportunity to probe the Galactic potential in the outskirt of the Galactic halo. Based on a canonical NFW model of the Galactic potential, Besla et al.(2007) reconstructed LMC and SMC's orbits and suggested that they are currently on their first perigalacticon passage about the Galaxy. Motivated by several recent revisions of the Sun's motion around the Galactic center, we re-examine the LMC's orbital history and show that it depends sensitively on the dark-matter's mass distribution beyond its present Galactic distance. We utilize results of numerical simulations to consider a range of possible structural and evolutionary models for the Galactic potentials. We find that within the theoretical and observational uncertainties, it is possible for the LMC to have had multiple perigalacticon passages on the Hubble time scale, especially if the Galactic circular velocity at the location of the Sun is greater than ∼228\sim 228km s−1^{-1}. Based on these models, a more accurate determination of the LMC's motion may be used to determine the dark matter distribution in the outskirt of the Galactic halo.Comment: 9 pages, 10 figures. Accepted for publication in Ap
    • …
    corecore