21 research outputs found

    Probing Hydrogen-Bonding Interactions within Phenol-Benzimidazole Proton-Coupled Electron Transfer Model Complexes with Cryogenic Ion Vibrational Spectroscopy

    No full text
    Hydrogen-bonding interactions within a series of phenol-benzimidazole model proton-coupled electron transfer (PCET) dyad complexes are characterized using cryogenic ion vibrational spectroscopy. A highly red-shifted and surprisingly broad (>1000 cm–1) transition is observed in one of the models and assigned to the phenolic OH stretch strongly H-bonded to the N(3) benzimidazole atom. The breadth is attributed to a combination of anharmonic Fermi-resonance coupling between the OH stretch and background doorway states involving OH bending modes and strong coupling of the OH stretch frequency to structural deformations along the proton-transfer coordinate accessible at the vibrational zero-point level. The other models show unexpected protonation of the benzimidazole group upon electrospray ionization instead of at more basic remote amine/amide groups. This leads to the formation of HO–+HN(3) H-bond motifs that are much weaker than the OH–N(3) H-bond arrangement. H-bonding between the N(1)H+ benzimidazole group and the carbonyl on the tyrosine backbone is the stronger and preferred interaction in these complexes. The results show that conjugation effects, secondary H-bond interactions, and H-bond soft modes strongly influence the OH–N(3) interaction and highlight the importance of the direct monitoring of proton stretch transitions in characterizing the proton-transfer reaction coordinate in PCET systems

    Unraveling the Vibrational Spectral Signatures of a Dislocated H Atom in Model Proton-Coupled Electron Transfer Dyad Systems

    No full text
    Phenol–benzimidazole and phenol–pyridine proton-coupled electron transfer (PCET) dyad systems are computationally investigated to resolve the origins of the asymmetrically broadened H-bonded OH stretch transitions that have been previously reported using cryogenic ion vibrational spectroscopy in the ground electronic state. Two-dimensional (2D) potentials describing the strongly shared H atom are predicted to be very shallow along the H atom transfer coordinate, enabling dislocation of the H atom between the donor and acceptor groups upon excitation of the OH vibrational modes. These soft H atom potentials result in strong coupling between the OH modes, which exhibit significant bend-stretch mixing, and a large number of normal mode coordinates. Vibrational spectra are calculated using a Hamiltonian that linearly and quadratically couples the H atom potentials to over two dozen of the most strongly coupled normal modes treated at the harmonic level. The calculated vibrational spectra qualitatively reproduce the asymmetric shape and breadth of the experimentally observed bands in the 2300–3000 cm–1 range. Interestingly, these transitions fall well above the predicted OH stretch fundamentals, which are computed to be surprisingly red-shifted (–1). Time-dependent calculations predict rapid (<100 fs) relaxation of the excited OH modes and instant response from the lower-frequency normal modes, corroborating the strong coupling predicted by the model Hamiltonian. The results highlight a unique broadening mechanism and complicated anharmonic effects present within these biologically relevant PCET model systems

    Time-Domain Vibrational Action Spectroscopy of Cryogenically Cooled, Messenger-Tagged Ions Using Ultrafast IR Pulses

    No full text
    Herein, we present the initial steps toward developing a framework that will enable the characterization of photoinitiated dynamics within large molecular ions in the gas phase with temporal and energy resolution. We combine the established techniques of tag-loss action spectroscopy on cryogenically trapped molecular ions with ultrafast vibrational spectroscopy by measuring the linear action spectrum of N2-tagged protonated diglycine (GlyGlyH+·N2) with an ultrafast infrared (IR) pulse pair. The presented time-domain data demonstrate that the excited-state vibrational populations in the tagged parent ions are modulated by the ultrafast IR pulse pair and encoded through the messenger tag-loss action response. The Fourier transform of the time-domain action interferograms yields the linear frequency-domain vibrational spectrum of the ion ensemble, and we show that this spectrum matches the linear spectrum collected in a traditional manner using a frequency-resolved IR laser. Time- and frequency-domain interpretations of the data are considered and discussed. Finally, we demonstrate the acquisition of nonlinear signals through cross-polarization pump–probe experiments. These results validate the prerequisite first steps of combining tag-loss action spectroscopy with two-dimensional IR spectroscopy for probing dynamics in gas-phase molecular ions

    Two-Dimensional Infrared Spectroscopy of Isolated Molecular Ions

    No full text
    Two-dimensional infrared (2D IR) spectroscopy of mass-selected, cryogenically cooled molecular ions is presented. Nonlinear response pathways, encoded in the time-domain photodissociation action response of weakly bound N2 messenger tags, were isolated using pulse shaping techniques following excitation with four collinear ultrafast IR pulses. 2D IR spectra of Re­(CO)3(CH3CN)3+ ions capture off-diagonal cross-peak bleach signals between the asymmetric and symmetric carbonyl stretching transitions. These cross peaks display intensity variations as a function of pump–probe delay time due to coherent coupling between the vibrational modes. Well-resolved 2D IR features in the congested fingerprint region of protonated caffeine (C8H10N4O2H+) are also reported. Importantly, intense cross-peak signals were observed at 3 ps waiting time, indicating that tag-loss dynamics are not competing with the measured nonlinear signals. These demonstrations pave the way for more precise studies of molecular interactions and dynamics that are not easily obtainable with current condensed-phase methodologies

    Space-variant Shack-Hartmann wavefront sensing based on affine transformation estimation

    No full text
    The space-variant wavefront reconstruction problem inherently exists in deep tissue imaging. In this paper,we propose a framework of Shack-Hartmann wavefront space-variant sensing with extended source illumination. The space-variant wavefront is modeled as a four-dimensional function where two dimensionsare in the spatial domain and two in the Fourier domain with priors that both gently vary. Here, the affinetransformation is used to characterize the wavefront space-variant function. Correspondingly, the zonaland modal methods are both escalated to adapt to four-dimensional representation and reconstruction.Experiments and simulations show double to quadruple improvements in space-variant wavefront reconstruction accuracy compared to the conventional space-invariant correlation method

    Moment-based space-variant Shack-Hartmann wavefront reconstruction

    No full text
    Based on image moment theory, an approach for space-variant Shack-Hartmann wavefront reconstruction is presented in this article. The relation between the moment of a pair of subimages and the local transformation coefficients is derived. The square guide 'star' is used to obtain a special solution from this relation. The moment-based wavefront reconstruction has a reduced computational complexity compared to the iteration-based algorithm. Image restorations are executed by the tiling strategy with 5 Ă—\times 5 PSFs as well as the conventional strategy with a global average PSF. Visual and quantitative evaluations support our approach
    corecore