4 research outputs found

    High-Performance PEBA2533-Functional MMT Mixed Matrix Membrane Containing High-Speed Facilitated Transport Channels for CO<sub>2</sub>/N<sub>2</sub> Separation

    No full text
    A novel mixed matrix membrane was fabricated by establishing montmorillonite (MMT) functionalized with poly­(ethylene glycol) methyl ether (PEG) and aminosilane coupling agents in a PEBA membrane. The functional MMT played multiple roles in enhancing membrane performance. First, the MMT channels could be used as high-speed facilitated transport channels, in which the movable metal cations acted as carriers of CO<sub>2</sub> to increase the CO<sub>2</sub> permeability. Second, due to mobility of long-chain aminos and reversible reactions between CO<sub>2</sub> and amine groups, the functional MMT could actively catch the CO<sub>2</sub>, not passively wait for arrival of CO<sub>2</sub>, which can facilitate the CO<sub>2</sub> transport. At last, PEG consisting of EO groups had excellent affinity for CO<sub>2</sub> to enhance the CO<sub>2</sub>/N<sub>2</sub> selectivity. Thus, the as-prepared functional MMMs exhibited good CO<sub>2</sub> permeability and CO<sub>2</sub>/N<sub>2</sub> selectivity. The functional MMM doped with 40 wt % of MMT-HD702-PEG5000 displayed optimal gas separation with a CO<sub>2</sub> permeability of 448.45 Barrer and a CO<sub>2</sub>/N<sub>2</sub> selectivity of 70.73, surpassing the upper bound lines of the Robeson study of 2008

    Al–Pd Nanodisk Heterodimers as Antenna–Reactor Photocatalysts

    No full text
    Photocatalysis uses light energy to drive chemical reactions. Conventional industrial catalysts are made of transition metal nanoparticles that interact only weakly with light, while metals such as Au, Ag, and Al that support surface plasmons interact strongly with light but are poor catalysts. By combining plasmonic and catalytic metal nanoparticles, the plasmonic “antenna” can couple light into the catalytic “reactor”. This interaction induces an optical polarization in the reactor nanoparticle, forcing a plasmonic response. When this “forced plasmon” decays it can generate hot carriers, converting the catalyst into a photocatalyst. Here we show that precisely oriented, strongly coupled Al–Pd nanodisk heterodimers fabricated using nanoscale lithography can function as directional antenna–reactor photocatalyst complexes. The light-induced hydrogen dissociation rate on these structures is strongly dependent upon the polarization angle of the incident light with respect to the orientation of the antenna–reactor pair. Their high degree of structural precision allows us to microscopically quantify the photocatalytic activity per heterostructure, providing precise photocatalytic quantum efficiencies. This is the first example of precisely designed heterometallic nanostructure complexes for plasmon-enabled photocatalysis and paves the way for high-efficiency plasmonic photocatalysts by modular design

    Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source

    No full text
    Active optical processes such as amplification and stimulated emission promise to play just as important a role in nanoscale optics as they have in mainstream modern optics. The ability of metallic nanostructures to enhance optical nonlinearities at the nanoscale has been shown for a number of nonlinear and active processes; however, one important process yet to be seen is optical parametric amplification. Here, we report the demonstration of surface plasmon-enhanced difference frequency generation by integration of a nonlinear optical medium, BaTiO<sub>3</sub>, in nanocrystalline form within a plasmonic nanocavity. These nanoengineered composite structures support resonances at pump, signal, and idler frequencies, providing large enhancements of the confined fields and efficient coupling of the wavelength-converted idler radiation to the far-field. This nanocomplex works as a nanoscale tunable infrared light source and paves the way for the design and fabrication of a surface plasmon-enhanced optical parametric amplifier

    Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy

    No full text
    Surface-enhanced infrared absorption (SEIRA) spectroscopy has outstanding potential in chemical detection as a complement to surface-enhanced Raman spectroscopy (SERS), yet it has historically lagged well behind SERS in detection sensitivity. Here we report a new ultrasensitive infrared antenna designed to bring SEIRA spectroscopy into the few-molecule detection range. Our antenna consists of a bowtie-shaped Au structure with a sub-3 nm gap, positioned to create a cavity above a reflective substrate. This three-dimensional geometry tightly confines incident mid-infrared radiation into its ultrasmall junction, yielding a hot spot with a theoretical SEIRA enhancement factor of more than 10<sup>7</sup>, which can be designed to span the range of frequencies useful for SEIRA. We quantitatively evaluated the IR detection limit of this antenna design using mixed monolayers of 4-nitrothiophenol (4-NTP) and 4-methoxythiolphenol (4-MTP). The optimized antenna structure allows the detection of as few as ∌500 molecules of 4-NTP and ∌600 molecules of 4-MTP with a standard commercial FTIR spectrometer. This strategy offers a new platform for analyzing the IR vibrations of minute quantities of molecules and lends insight into the ultimate limit of single-molecule SEIRA detection
    corecore