13,963 research outputs found
Improved Linear Precoding over Block Diagonalization in Multi-cell Cooperative Networks
In downlink multiuser multiple-input multiple-output (MIMO) systems, block
diagonalization (BD) is a practical linear precoding scheme which achieves the
same degrees of freedom (DoF) as the optimal linear/nonlinear precoding
schemes. However, its sum-rate performance is rather poor in the practical SNR
regime due to the transmit power boost problem. In this paper, we propose an
improved linear precoding scheme over BD with a so-called
"effective-SNR-enhancement" technique. The transmit covariance matrices are
obtained by firstly solving a power minimization problem subject to the minimum
rate constraint achieved by BD, and then properly scaling the solution to
satisfy the power constraints. It is proved that such approach equivalently
enhances the system SNR, and hence compensates the transmit power boost problem
associated with BD. The power minimization problem is in general non-convex. We
therefore propose an efficient algorithm that solves the problem heuristically.
Simulation results show significant sum rate gains over the optimal BD and the
existing minimum mean square error (MMSE) based precoding schemes.Comment: 21 pages, 4 figure
Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates
We study semiparametric varying-coefficient partially linear models when some
linear covariates are not observed, but ancillary variables are available.
Semiparametric profile least-square based estimation procedures are developed
for parametric and nonparametric components after we calibrate the error-prone
covariates. Asymptotic properties of the proposed estimators are established.
We also propose the profile least-square based ratio test and Wald test to
identify significant parametric and nonparametric components. To improve
accuracy of the proposed tests for small or moderate sample sizes, a wild
bootstrap version is also proposed to calculate the critical values. Intensive
simulation experiments are conducted to illustrate the proposed approaches.Comment: Published in at http://dx.doi.org/10.1214/07-AOS561 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
On Thermal Gravitational Contribution to Particle Production and Dark Matter
We investigate the particle production from thermal gravitational
annihilation in the very early universe, which is an important contribution for
particles that might not be in thermal equilibrium or/and only have
gravitational interaction, such as dark matter (DM). For particles with spin 0,
1/2 and 1 we calculate the relevant cross sections through gravitational
annihilation and give the analytic formulas with full mass-dependent terms. We
find that DM with mass between TeV and GeV could have the relic
abundance that fits the observation, with small dependence on its spin. We also
discuss the effects of gravitational annihilation from inflatons.
Interestingly, contributions from inflatons could be dominant and have the same
power dependence on Hubble parameter of inflation as that from vacuum
fluctuation. Also, fermion production from inflatons, in comparison to boson,
is suppressed by its mass due to helicity selection.Comment: 10 pages, 3 figures and 2 tables, published versio
Pure Gravitational Dark Matter, Its Mass and Signatures
In this study, we investigate a scenario that dark matter (DM) has only
gravitational interaction. In the framework of effective field theory of
gravity, we find that DM is still stable at tree level even if there is no
symmetry to protect its longevity, but could decay into standard model
particles due to gravitational loop corrections. The radiative corrections can
lead to both higher- and lower-dimensional effective operators. We also first
explore how DM can be produced in the early universe. Through gravitational
interaction at high temperature, DM is then found to have mass around TeV
GeV to get the right relic abundance. When DM
decays, it mostly decays into gravitons, which could be tested by current and
future CMB experiments. We also estimate the resulting fluxes for cosmic rays,
gamma-ray and neutrino.Comment: 6 pages, 3 figure
The Lepton-Number-Violating Decays of and Mesons Induced by the Doubly Charged Higgs Boson
The lepton-number-violating decays of and mesons induced
by the doubly charged Higgs boson have been studied. It is found that although
the yielded results of the branch ratio are much smaller than the present
limits from the data they are consistent with the previous conclusions
calculated in the framwork of relativistic quark model where the processes
happened via the light Majorana neutrinos.Comment: version to appear in PR
- β¦