6 research outputs found
Recommended from our members
The genomic diversification of grapevine clones.
BACKGROUND:Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better appreciate clone diversity and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. RESULTS:Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than in genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and because methylated cytosines often spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. CONCLUSIONS:These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clones accumulate putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions or some mechanism by which mutations are less frequent in coding than noncoding regions of the genome
Catalytic ozonation mechanism over M1-N3C1 active sites
Abstract The structure-activity relationship in catalytic ozonation remains unclear, hindering the understanding of activity origins. Here, we report activity trends in catalytic ozonation using a series of single-atom catalysts with well-defined M1-N3C1 (M: manganese, ferrum, cobalt, and nickel) active sites. The M1-N3C1 units induce locally polarized MâââC bonds to capture ozone molecules onto M atoms and serve as electron shuttles for catalytic ozonation, exhibiting excellent catalytic activities (at least 527 times higher than commercial manganese dioxide). The combined in situ characterization and theoretical calculations reveal single metal atom-dependent catalytic activity, with surface atomic oxygen reactivity identified as a descriptor for the structure-activity relationship in catalytic ozonation. Additionally, the dissociation barrier of surface peroxide species is proposed as a descriptor for the structure-activity relationship in ozone decomposition. These findings provide guidelines for designing high-performance catalytic ozonation catalysts and enhance the atomic-level mechanistic understanding of the integral control of ozone and methyl mercaptan
Recommended from our members
The genomic diversification of grapevine clones.
BACKGROUND: Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better appreciate clone diversity and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. RESULTS: Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than in genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and because methylated cytosines often spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. CONCLUSIONS: These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clones accumulate putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions or some mechanism by which mutations are less frequent in coding than noncoding regions of the genome
Recommended from our members
Rootstock influences the effect of grapevine leafrollâassociated viruses on berry development and metabolism via abscisic acid signalling
Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks
Recommended from our members
The genomic diversification of grapevine clones.
BACKGROUND:Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better appreciate clone diversity and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. RESULTS:Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than in genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and because methylated cytosines often spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. CONCLUSIONS:These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clones accumulate putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions or some mechanism by which mutations are less frequent in coding than noncoding regions of the genome