134 research outputs found
X-ray Astronomical Point Sources Recognition Using Granular Binary-tree SVM
The study on point sources in astronomical images is of special importance,
since most energetic celestial objects in the Universe exhibit a point-like
appearance. An approach to recognize the point sources (PS) in the X-ray
astronomical images using our newly designed granular binary-tree support
vector machine (GBT-SVM) classifier is proposed. First, all potential point
sources are located by peak detection on the image. The image and spectral
features of these potential point sources are then extracted. Finally, a
classifier to recognize the true point sources is build through the extracted
features. Experiments and applications of our approach on real X-ray
astronomical images are demonstrated. comparisons between our approach and
other SVM-based classifiers are also carried out by evaluating the precision
and recall rates, which prove that our approach is better and achieves a higher
accuracy of around 89%.Comment: Accepted by ICSP201
CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI Reconstruction
Undersampling k-space data in MRI reduces scan time but pose challenges in
image reconstruction. Considerable progress has been made in reconstructing
accelerated MRI. However, restoration of high-frequency image details in highly
undersampled data remains challenging. To address this issue, we propose
CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for
accelerated MRI reconstruction. CAMP-Net leverages complementary multi-prior
knowledge and multi-slice information from various domains to enhance
reconstruction quality. Specifically, CAMP-Net comprises three interleaved
modules for image enhancement, k-space restoration, and calibration
consistency, respectively. These modules jointly learn priors from data in
image domain, k-domain, and calibration region, respectively, in data-driven
manner during each unrolled iteration. Notably, the encoded calibration prior
knowledge extracted from auto-calibrating signals implicitly guides the
learning of consistency-aware k-space correlation for reliable interpolation of
missing k-space data. To maximize the benefits of image domain and k-domain
prior knowledge, the reconstructions are aggregated in a frequency fusion
module, exploiting their complementary properties to optimize the trade-off
between artifact removal and fine detail preservation. Additionally, we
incorporate a surface data fidelity layer during the learning of k-domain and
calibration domain priors to prevent degradation of the reconstruction caused
by padding-induced data imperfections. We evaluate the generalizability and
robustness of our method on three large public datasets with varying
acceleration factors and sampling patterns. The experimental results
demonstrate that our method outperforms state-of-the-art approaches in terms of
both reconstruction quality and mapping estimation, particularly in
scenarios with high acceleration factors
Exploring the Cosmic Reionization Epoch in Frequency Space: An Improved Approach to Remove the Foreground in 21 cm Tomography
Aiming to correctly restore the redshifted 21 cm signals emitted by the
neutral hydrogen during the cosmic reionization processes, we re-examine the
separation approaches based on the quadratic polynomial fitting technique in
frequency space to investigate whether they works satisfactorily with complex
foreground, by quantitatively evaluate the quality of restored 21 cm signals in
terms of sample statistics. We construct the foreground model to characterize
both spatial and spectral substructures of the real sky, and use it to simulate
the observed radio spectra. By comparing between different separation
approaches through statistical analysis of restored 21 cm spectra and
corresponding power spectra, as well as their constraints on the mean halo bias
and average ionization fraction of the reionization processes, at
and the noise level of 60 mK we find that, although the complex
foreground can be well approximated with quadratic polynomial expansion, a
significant part of Mpc-scale components of the 21 cm signals (75% for Mpc scales and 34% for Mpc scales) is lost because
it tends to be mis-identified as part of the foreground when
single-narrow-segment separation approach is applied. The best restoration of
the 21 cm signals and the tightest determination of and can be
obtained with the three-narrow-segment fitting technique as proposed in this
paper. Similar results can be obtained at other redshifts.Comment: 33 pages, 14 figures. Accepted for publication in Ap
A Study of the Merger History of the Galaxy Group HCG 62 Based on X-Ray Observations and SPH Simulations
We choose the bright compact group HCG 62, which was found to exhibit both
excess X-ray emission and high Fe abundance to the southwest of its core, as an
example to study the impact of mergers on chemical enrichment in the intragroup
medium. We first reanalyze the high-quality Chandra and XMM-Newton archive data
to search for the evidence for additional SN II yields, which is expected as a
direct result of the possible merger-induced starburst. We reveal that, similar
to the Fe abundance, the Mg abundance also shows a high value in both the
innermost region and the southwest substructure, forming a high-abundance
plateau, meanwhile all the SN Ia and SN II yields show rather flat
distributions in in favor of an early enrichment. Then we carry
out a series of idealized numerical simulations to model the collision of two
initially isolated galaxy groups by using the TreePM-SPH GADGET-3 code. We find
that the observed X-ray emission and metal distributions, as well as the
relative positions of the two bright central galaxies with reference to the
X-ray peak, can be well reproduced in a major merger with a mass ratio of 3
when the merger-induced starburst is assumed. The `best-match' snapshot is
pinpointed after the third pericentric passage when the southwest substructure
is formed due to gas sloshing. By following the evolution of the simulated
merging system, we conclude that the effects of such a major merger on chemical
enrichment are mostly restricted within the core region when the final relaxed
state is reached.Comment: Accepted for publication in the Astrophysical Journa
- …