63 research outputs found

    A nested mixture model for protein identification using mass spectrometry

    Full text link
    Mass spectrometry provides a high-throughput way to identify proteins in biological samples. In a typical experiment, proteins in a sample are first broken into their constituent peptides. The resulting mixture of peptides is then subjected to mass spectrometry, which generates thousands of spectra, each characteristic of its generating peptide. Here we consider the problem of inferring, from these spectra, which proteins and peptides are present in the sample. We develop a statistical approach to the problem, based on a nested mixture model. In contrast to commonly used two-stage approaches, this model provides a one-stage solution that simultaneously identifies which proteins are present, and which peptides are correctly identified. In this way our model incorporates the evidence feedback between proteins and their constituent peptides. Using simulated data and a yeast data set, we compare and contrast our method with existing widely used approaches (PeptideProphet/ProteinProphet) and with a recently published new approach, HSM. For peptide identification, our single-stage approach yields consistently more accurate results. For protein identification the methods have similar accuracy in most settings, although we exhibit some scenarios in which the existing methods perform poorly.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS316 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Measuring reproducibility of high-throughput experiments

    Full text link
    Reproducibility is essential to reliable scientific discovery in high-throughput experiments. In this work we propose a unified approach to measure the reproducibility of findings identified from replicate experiments and identify putative discoveries using reproducibility. Unlike the usual scalar measures of reproducibility, our approach creates a curve, which quantitatively assesses when the findings are no longer consistent across replicates. Our curve is fitted by a copula mixture model, from which we derive a quantitative reproducibility score, which we call the "irreproducible discovery rate" (IDR) analogous to the FDR. This score can be computed at each set of paired replicate ranks and permits the principled setting of thresholds both for assessing reproducibility and combining replicates. Since our approach permits an arbitrary scale for each replicate, it provides useful descriptive measures in a wide variety of situations to be explored. We study the performance of the algorithm using simulations and give a heuristic analysis of its theoretical properties. We demonstrate the effectiveness of our method in a ChIP-seq experiment.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS466 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Practical guidelines for the comprehensive analysis of ChIP-seq data.

    Get PDF
    Mapping the chromosomal locations of transcription factors, nucleosomes, histone modifications, chromatin remodeling enzymes, chaperones, and polymerases is one of the key tasks of modern biology, as evidenced by the Encyclopedia of DNA Elements (ENCODE) Project. To this end, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the standard methodology. Mapping such protein-DNA interactions in vivo using ChIP-seq presents multiple challenges not only in sample preparation and sequencing but also for computational analysis. Here, we present step-by-step guidelines for the computational analysis of ChIP-seq data. We address all the major steps in the analysis of ChIP-seq data: sequencing depth selection, quality checking, mapping, data normalization, assessment of reproducibility, peak calling, differential binding analysis, controlling the false discovery rate, peak annotation, visualization, and motif analysis. At each step in our guidelines we discuss some of the software tools most frequently used. We also highlight the challenges and problems associated with each step in ChIP-seq data analysis. We present a concise workflow for the analysis of ChIP-seq data in Figure 1 that complements and expands on the recommendations of the ENCODE and modENCODE projects. Each step in the workflow is described in detail in the following sections

    Systematic Evaluation of Factors Influencing ChIP-Seq Fidelity

    Get PDF
    We performed a systematic evaluation of how variations in sequencing depth and other parameters influence interpretation of Chromatin immunoprecipitation (ChIP) followed by sequencing (ChIP-seq) experiments. Using Drosophila S2 cells, we generated ChIP-seq datasets for a site-specific transcription factor (Suppressor of Hairy-wing) and a histone modification (H3K36me3). We detected a chromatin state bias, open chromatin regions yielded higher coverage, which led to false positives if not corrected and had a greater effect on detection specificity than any base-composition bias. Paired-end sequencing revealed that single-end data underestimated ChIP library complexity at high coverage. The removal of reads originating at the same base reduced false-positives while having little effect on detection sensitivity. Even at a depth of ~1 read/bp coverage of mappable genome, ~1% of the narrow peaks detected on a tiling array were missed by ChIP-seq. Evaluation of widely-used ChIP-seq analysis tools suggests that adjustments or algorithm improvements are required to handle datasets with deep coverage

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF
    • …
    corecore