63 research outputs found
A nested mixture model for protein identification using mass spectrometry
Mass spectrometry provides a high-throughput way to identify proteins in
biological samples. In a typical experiment, proteins in a sample are first
broken into their constituent peptides. The resulting mixture of peptides is
then subjected to mass spectrometry, which generates thousands of spectra, each
characteristic of its generating peptide. Here we consider the problem of
inferring, from these spectra, which proteins and peptides are present in the
sample. We develop a statistical approach to the problem, based on a nested
mixture model. In contrast to commonly used two-stage approaches, this model
provides a one-stage solution that simultaneously identifies which proteins are
present, and which peptides are correctly identified. In this way our model
incorporates the evidence feedback between proteins and their constituent
peptides. Using simulated data and a yeast data set, we compare and contrast
our method with existing widely used approaches (PeptideProphet/ProteinProphet)
and with a recently published new approach, HSM. For peptide identification,
our single-stage approach yields consistently more accurate results. For
protein identification the methods have similar accuracy in most settings,
although we exhibit some scenarios in which the existing methods perform
poorly.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS316 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Measuring reproducibility of high-throughput experiments
Reproducibility is essential to reliable scientific discovery in
high-throughput experiments. In this work we propose a unified approach to
measure the reproducibility of findings identified from replicate experiments
and identify putative discoveries using reproducibility. Unlike the usual
scalar measures of reproducibility, our approach creates a curve, which
quantitatively assesses when the findings are no longer consistent across
replicates. Our curve is fitted by a copula mixture model, from which we derive
a quantitative reproducibility score, which we call the "irreproducible
discovery rate" (IDR) analogous to the FDR. This score can be computed at each
set of paired replicate ranks and permits the principled setting of thresholds
both for assessing reproducibility and combining replicates. Since our approach
permits an arbitrary scale for each replicate, it provides useful descriptive
measures in a wide variety of situations to be explored. We study the
performance of the algorithm using simulations and give a heuristic analysis of
its theoretical properties. We demonstrate the effectiveness of our method in a
ChIP-seq experiment.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS466 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Practical guidelines for the comprehensive analysis of ChIP-seq data.
Mapping the chromosomal locations of transcription factors, nucleosomes, histone modifications, chromatin remodeling enzymes, chaperones, and polymerases is one of the key tasks of modern biology, as evidenced by the Encyclopedia of DNA Elements (ENCODE) Project. To this end, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the standard methodology. Mapping such protein-DNA interactions in vivo using ChIP-seq presents multiple challenges not only in sample preparation and sequencing but also for computational analysis. Here, we present step-by-step guidelines for the computational analysis of ChIP-seq data. We address all the major steps in the analysis of ChIP-seq data: sequencing depth selection, quality checking, mapping, data normalization, assessment of reproducibility, peak calling, differential binding analysis, controlling the false discovery rate, peak annotation, visualization, and motif analysis. At each step in our guidelines we discuss some of the software tools most frequently used. We also highlight the challenges and problems associated with each step in ChIP-seq data analysis. We present a concise workflow for the analysis of ChIP-seq data in Figure 1 that complements and expands on the recommendations of the ENCODE and modENCODE projects. Each step in the workflow is described in detail in the following sections
Recommended from our members
An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis.
Thousands of epigenomic data sets have been generated in the past decade, but it is difficult for researchers to effectively use all the data relevant to their projects. Systematic integrative analysis can help meet this need, and the VISION project was established for validated systematic integration of epigenomic data in hematopoiesis. Here, we systematically integrated extensive data recording epigenetic features and transcriptomes from many sources, including individual laboratories and consortia, to produce a comprehensive view of the regulatory landscape of differentiating hematopoietic cell types in mouse. By using IDEAS as our integrative and discriminative epigenome annotation system, we identified and assigned epigenetic states simultaneously along chromosomes and across cell types, precisely and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of more than 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and promoters. The transitions in epigenetic states of these cCREs across cell types provided insights into mechanisms of regulation, including decreases in numbers of active cCREs during differentiation of most lineages, transitions from poised to active or inactive states, and shifts in nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at cCREs and gene expression produced a versatile resource to improve selection of cCREs potentially regulating target genes. These resources are available from our VISION website to aid research in genomics and hematopoiesis.National Institute of Diabetes and Digestive and Kidney Diseases (grant number R24DK106766-01A1), the National Human Genome Research Institute (grant number U54HG006998
Systematic Evaluation of Factors Influencing ChIP-Seq Fidelity
We performed a systematic evaluation of how variations in sequencing depth and other parameters influence interpretation of Chromatin immunoprecipitation (ChIP) followed by sequencing (ChIP-seq) experiments. Using Drosophila S2 cells, we generated ChIP-seq datasets for a site-specific transcription factor (Suppressor of Hairy-wing) and a histone modification (H3K36me3). We detected a chromatin state bias, open chromatin regions yielded higher coverage, which led to false positives if not corrected and had a greater effect on detection specificity than any base-composition bias. Paired-end sequencing revealed that single-end data underestimated ChIP library complexity at high coverage. The removal of reads originating at the same base reduced false-positives while having little effect on detection sensitivity. Even at a depth of ~1 read/bp coverage of mappable genome, ~1% of the narrow peaks detected on a tiling array were missed by ChIP-seq. Evaluation of widely-used ChIP-seq analysis tools suggests that adjustments or algorithm improvements are required to handle datasets with deep coverage
- …