166 research outputs found

    Hypothesis Testing of Matrix Graph Model with Application to Brain Connectivity Analysis

    Get PDF
    Brain connectivity analysis is now at the foreground of neuroscience research. A connectivity network is characterized by a graph, where nodes represent neural elements such as neurons and brain regions, and links represent statistical dependences that are often encoded in terms of partial correlations. Such a graph is inferred from matrix-valued neuroimaging data such as electroencephalography and functional magnetic resonance imaging. There have been a good number of successful proposals for sparse precision matrix estimation under normal or matrix normal distribution; however, this family of solutions do not offer a statistical significance quantification for the estimated links. In this article, we adopt a matrix normal distribution framework and formulate the brain connectivity analysis as a precision matrix hypothesis testing problem. Based on the separable spatial-temporal dependence structure, we develop oracle and data-driven procedures to test the global hypothesis that all spatial locations are conditionally independent, which are shown to be particularly powerful against the sparse alternatives. In addition, simultaneous tests for identifying conditional dependent spatial locations with false discovery rate control are proposed in both oracle and data-driven settings. Theoretical results show that the data-driven procedures perform asymptotically as well as the oracle procedures and enjoy certain optimality properties. The empirical finite-sample performance of the proposed tests is studied via simulations, and the new tests are applied on a real electroencephalography data analysis

    Comment: Fisher Lecture: Dimension Reduction in Regression

    Full text link
    Comment: Fisher Lecture: Dimension Reduction in Regression [arXiv:0708.3774]Comment: Published at http://dx.doi.org/10.1214/088342307000000050 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamic Tensor Clustering

    Full text link
    Dynamic tensor data are becoming prevalent in numerous applications. Existing tensor clustering methods either fail to account for the dynamic nature of the data, or are inapplicable to a general-order tensor. Also there is often a gap between statistical guarantee and computational efficiency for existing tensor clustering solutions. In this article, we aim to bridge this gap by proposing a new dynamic tensor clustering method, which takes into account both sparsity and fusion structures, and enjoys strong statistical guarantees as well as high computational efficiency. Our proposal is based upon a new structured tensor factorization that encourages both sparsity and smoothness in parameters along the specified tensor modes. Computationally, we develop a highly efficient optimization algorithm that benefits from substantial dimension reduction. In theory, we first establish a non-asymptotic error bound for the estimator from the structured tensor factorization. Built upon this error bound, we then derive the rate of convergence of the estimated cluster centers, and show that the estimated clusters recover the true cluster structures with a high probability. Moreover, our proposed method can be naturally extended to co-clustering of multiple modes of the tensor data. The efficacy of our approach is illustrated via simulations and a brain dynamic functional connectivity analysis from an Autism spectrum disorder study.Comment: Accepted at Journal of the American Statistical Associatio
    • …
    corecore