606 research outputs found

    Discrete Fourier analysis with lattices on planar domains

    Full text link
    A discrete Fourier analysis associated with translation lattices is developed recently by the authors. It permits two lattices, one determining the integral domain and the other determining the family of exponential functions. Possible choices of lattices are discussed in the case of lattices that tile \RR^2 and several new results on cubature and interpolation by trigonometric, as well as algebraic, polynomials are obtained

    Discrete Fourier Analysis and Chebyshev Polynomials with G2G_2 Group

    Full text link
    The discrete Fourier analysis on the 30°30^{\degree}-60°60^{\degree}-90°90^{\degree} triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2G_2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of mm-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type

    Discrete Fourier analysis, Cubature and Interpolation on a Hexagon and a Triangle

    Full text link
    Several problems of trigonometric approximation on a hexagon and a triangle are studied using the discrete Fourier transform and orthogonal polynomials of two variables. A discrete Fourier analysis on the regular hexagon is developed in detail, from which the analysis on the triangle is deduced. The results include cubature formulas and interpolation on these domains. In particular, a trigonometric Lagrange interpolation on a triangle is shown to satisfy an explicit compact formula, which is equivalent to the polynomial interpolation on a planer region bounded by Steiner's hypocycloid. The Lebesgue constant of the interpolation is shown to be in the order of (logn)2(\log n)^2. Furthermore, a Gauss cubature is established on the hypocycloid.Comment: 29 page

    An Adaptive Orthogonal Basis Method for Computing Multiple Solutions of Differential Equations with polynomial nonlinearities

    Full text link
    This paper presents an innovative approach, the Adaptive Orthogonal Basis Method, tailored for computing multiple solutions to differential equations characterized by polynomial nonlinearities. Departing from conventional practices of predefining candidate basis pools, our novel method adaptively computes bases, considering the equation's nature and structural characteristics of the solution. It further leverages companion matrix techniques to generate initial guesses for subsequent computations. Thus this approach not only yields numerous initial guesses for solving such equations but also adapts orthogonal basis functions to effectively address discretized nonlinear systems. Through a series of numerical experiments, this paper demonstrates the method's effectiveness and robustness. By reducing computational costs in various applications, this novel approach opens new avenues for uncovering multiple solutions to differential equations with polynomial nonlinearities
    corecore