419 research outputs found

    Spraying exogenous hormones alleviate impact of weak-light on yield by improving leaf carbon and nitrogen metabolism in fresh waxy maize

    Get PDF
    Insufficient light during the growth periods has become one of the main factors restricting maize yield with global climate change. Exogenous hormones application is a feasible measure to alleviate abiotic stresses on crop productivity. In this study, a field trial was conducted to investigate the effects of spraying exogenous hormones on yield, dry matter (DM) and nitrogen (N) accumulation, leaf carbon and N metabolism of fresh waxy maize under weak-light stress in 2021 and 2022. Five treatments including natural light (CK), weak-light after pollination (Z), spraying water (ZP1), exogenous Phytase Q9 (ZP2) and 6-benzyladenine (ZP3) under weak-light after pollination were set up using two hybrids suyunuo5 (SYN5) and jingkenuo2000 (JKN2000). Results showed that weak-light stress significantly reduced the average fresh ear yield (49.8%), fresh grain yield (47.9%), DM (53.3%) and N accumulation (59.9%), and increased grain moisture content. The net photosynthetic rate (Pn), transpiration rate (Tr) of ear leaf after pollination decreased under Z. Furthermore, weak-light decreased the activities of RuBPCase and PEPCase, nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in ear leaves, and increased malondialdehyde (MDA) accumulation. And the decrease was greater on JKN2000. While ZP2 and ZP3 treatments increased the fresh ear yield (17.8%, 25.3%), fresh grain yield (17.2%, 29.5%), DM (35.8%, 44.6%) and N (42.5%, 52.4%) accumulation, and decreased grain moisture content compared with Z. The Pn, Tr increased under ZP2 and ZP3. Moreover, the ZP2 and ZP3 treatments improved the activities of RuBPCase, PEPCase; NR, GS, GOGAT; SOD, CAT, POD in ear leaves, and decreased MDA content during grain filling stage. The results also showed the mitigative effect of ZP3 was greater than ZP2, and the improvement effect was more significant on JKN2000

    Extended ammonia observations towards the 'Integral-Shaped Filament'

    Full text link
    Recent observations suggest a scenario in which filamentary structures in the ISM represent the first step towards clumps/cores and eventually star formation. The densest filaments would then fragment into prestellar cores owing to gravitational instability. We seek to understand the roles filamentary structures play in high-mass star formation. We mapped the integral-shaped filament (ISF) in NH3 (1, 1) and (2, 2). The whole filamentary structure is uniformly and fully sampled. We find that the morphology revealed by the map of velocity-integrated intensity of the NH3 (1, 1) line is closely associated with the dust ridge. We identify 6 "clumps" related to the well known OMC-1 to 5 and 11 "sub-clumps" within the map and they are separated not randomly but in roughly equal intervals along the ISF. The average spacing of clumps is 11.30'±\pm1.31' (1.36±\pm0.16 pc ) and the average spacing of sub-clumps is 7.18'±\pm1.19' (0.86±\pm0.14 pc). These spacings agree well with the predicted values of the thermal (0.86 pc) and turbulent sausage instability (1.43 pc) by adopting a cylindric geometry of the ISF with an inclination of 60∘60^{\circ} with respect to the line of sight. We also find a velocity gradient of about 0.6 km s-1 pc-1 that runs along the ISF which likely arises from an overall rotation of the Orion A molecular cloud. The inferred ratio between rotational and gravitational energy is well below unity. Furthermore, fluctuations are seen in the centroid velocity diagram along the ISF. The OMC-1 to 5 clouds are located close to the local extrema of the fluctuations, which suggests that there exist gas flows associated with these clumps in the ISF. The derived NH3 (1, 1) and (2, 2) rotation temperatures in the OMC-1 are about 30-40 K. In OMC-2, OMC-3, and the northern part of OMC-4, we find higher and lower temperatures at the boundaries and in the interior, respectively.Comment: Accepted by A&A. 14 pages, 14 figure

    Investigating Sulfur Chemistry in the HD 163296 disk

    Full text link
    Sulfur chemistry in the formation process of low-mass stars and planets remains poorly understood. The protoplanetary disks (PPDs) are the birthplace of planets and its distinctive environment provides an intriguing platform for investigating models of sulfur chemistry. We analyzed the ALMA observations of CS 7-6 transitions in the HD 163296 disk and perform astrochemical modeling to explore its sulfur chemistry. We simulated the distribution of sulfur-containing molecules and compared it with observationally deduced fractional column densities. We have found that the simulated column density of CS is consistent with the observationally deduced fractional column densities, while the simulated column density of C2_2S is lower than the observationally deduced upper limits on column densities. This results indicate that we have a good understanding of the chemical properties of CS and C2_2S in the disk. We also investigated the influence of the C/O ratio on sulfur-containing molecules and found that the column densities of SO, SO2_2, and H2_2S near the central star are dependent on the C/O ratio. Additionally, we found that the NN[CS]/NN[SO] ratio can serve as a promising indicator of the disk's C/O ratio in the HD 163296. Overall, the disk of HD 163296 provides a favorable environment for the detection of sulfur-containing molecules.Comment: 16 pages, 7 figure

    Towards the in-situ Trunk Identification and Length Measurement of Sea Cucumbers via B\'{e}zier Curve Modelling

    Full text link
    We introduce a novel vision-based framework for in-situ trunk identification and length measurement of sea cucumbers, which plays a crucial role in the monitoring of marine ranching resources and mechanized harvesting. To model sea cucumber trunk curves with varying degrees of bending, we utilize the parametric B\'{e}zier curve due to its computational simplicity, stability, and extensive range of transformation possibilities. Then, we propose an end-to-end unified framework that combines parametric B\'{e}zier curve modeling with the widely used You-Only-Look-Once (YOLO) pipeline, abbreviated as TISC-Net, and incorporates effective funnel activation and efficient multi-scale attention modules to enhance curve feature perception and learning. Furthermore, we propose incorporating trunk endpoint loss as an additional constraint to effectively mitigate the impact of endpoint deviations on the overall curve. Finally, by utilizing the depth information of pixels located along the trunk curve captured by a binocular camera, we propose accurately estimating the in-situ length of sea cucumbers through space curve integration. We established two challenging benchmark datasets for curve-based in-situ sea cucumber trunk identification. These datasets consist of over 1,000 real-world marine environment images of sea cucumbers, accompanied by B\'{e}zier format annotations. We conduct evaluation on SC-ISTI, for which our method achieves mAP50 above 0.9 on both object detection and trunk identification tasks. Extensive length measurement experiments demonstrate that the average absolute relative error is around 0.15

    Enhancing production efficiency through optimizing plant density in maize–soybean strip intercropping

    Get PDF
    IntroductionDue to limited arable land resources, intercropping has emerged as an efficient and sustainable production method for increasing total grain yield per unit land area. Maize–soybean strip intercropping (MSSI) technology is being widely promoted and applied across China. However, the combination of optimal density for achieving higher production efficiency of both soybean and maize remains unclear. The objective of this study was to evaluate the differences in yield, economic benefits, land, and nitrogen (N) efficiency in MSSI systems under different densities.MethodsFive maize/soybean density combinations (67,500/97,500 plants ha−1, D1; 67,500/120,000 plants ha−1, D2; 67,500/142,500 plants ha−1, D3; 60,000/142,500 plants ha−1, D4; 52,500/142,500 plants ha−1, D5) were set under the same N input in the field experiment.Results and discussionThe results demonstrated that optimizing the density in the intercropping system could enhance production efficiency. Increasing the density of soybean and maize significantly increased the total grain yield (D3 > D2 > D1 > D4 > D5). The D3 treatment, exhibiting the best comprehensive performance, also promoted increases in leaf area index, dry matter accumulation, and N absorption and utilization. Path analysis indicated that density had the most substantial impact on maize yield, while grain number had the greatest influence on soybean yield, with contribution rates of 49.7% and 61.0%, respectively. These results provide valuable insights into optimal field density for summer planting in MSSI, facilitating its wider adoption

    Elevated monocyte-to-HDL cholesterol ratio predicts post-stroke depression

    Get PDF
    ObjectivesInflammation plays an important role in the development of depression after stroke. Monocyte-to-HDL Cholesterol Ratio (MHR) recently emerged as a novel comprehensive inflammatory indicator in recent years. This study aimed to investigate whether there is a relationship between MHR levels and post-stroke depression (PSD).MethodsFrom February 2019 to September 2021, patients with acute ischemic stroke (AIS) were recruited within 7 days post-stroke from the two centers and blood samples were collected after admission. The 17-item Hamilton Depression Scale (HAMD-17) was used to measure depressive symptoms at 3 months after stroke. Patients were given the DSM-V criteria for diagnosis of PSD.ResultsOf the 411 enrolled patients, 92 (22.38%) patients were diagnosed with PSD at 3-months follow-up. The results also showed significantly higher level of MHR in patients with depression [0.81 (IQR 0.67–0.87) vs. 0.61 (IQR 0.44–0.82), P < 0.001] at admission than patients without depression. Multivariate logistic regression revealed that MHR (OR 6.568, 95% CI: 2.123–14.565, P = 0.015) was an independent risk factor for the depression at 3 months after stroke. After adjustment for potential confounding factors, the odds ratio of PSD was 5.018 (95% CI: 1.694–14.867, P = 0.004) for the highest tertile of MHR compared with the lowest tertile. Based on the ROC curve, the optimal cut-off value of MHR as an indicator for prediction of PSD was projected to be 0.55, which yielded a sensitivity of 87% and a specificity of 68.3%, with the area under the curve at 0.660 (95% CI: 0.683–0.781; P = 0.003).ConclusionElevated level of MHR was associated with PSD at 3 months, suggesting that MHR might be a useful Inflammatory markers to predict depression after stroke

    Ammonia observations towards the Aquila Rift cloud complex

    Full text link
    We surveyed the Aquila Rift complex including the Serpens South and W40 region in the NH3_3(1,1) and (2,2) transitions making use of the Nanshan 26-m telescope. The kinetic temperatures of the dense gas in the Aquila Rift complex range from 8.9 to 35.0K with an average of 15.3±\pm6.1K. Low gas temperatures associate with Serpens South ranging from 8.9 to 16.8K with an average 12.3±\pm1.7K, while dense gas in the W40 region shows higher temperatures ranging from 17.7 to 35.0K with an average of 25.1±\pm4.9 K. A comparison of kinetic temperatures against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low mass star formation region of Serpens South. In the high mass star formation region W40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH3_3(1,1) is found to be positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH3 abundance obtained by a comparison with Herschel infrared continuum data representing dust emission we find values from 0.1 to 21×10−8\times 10^{-8} with an average of 6.9(±4.5)×10−8(\pm 4.5)\times 10^{-8}. Serpens South also shows a fractional total-NH3 abundance ranging from 0.2 to 21×10−8\times 10^{-8} with an average of 8.6(±3.8)×10−8\pm 3.8)\times 10^{-8}. In W40, values are lower, between 0.1 and 4.3×10−8\times 10^{-8} with an average of 1.6(±1.4)×10−8\pm 1.4)\times 10^{-8}. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong emission at lower and weak emission at higher Galactic longitudes
    • …
    corecore